CIESC Journal ›› 2022, Vol. 73 ›› Issue (11): 5025-5038.DOI: 10.11949/0438-1157.20220963
• Separation engineering • Previous Articles Next Articles
Haifeng GONG1(), Xin LUO2, Ye PENG2, Bao YU3, Yang YANG1, Haohua ZHANG2
Received:
2022-07-11
Revised:
2022-09-23
Online:
2022-12-06
Published:
2022-11-05
Contact:
Haifeng GONG
龚海峰1(), 罗鑫2, 彭烨2, 余保3, 杨阳1, 张浩华2
通讯作者:
龚海峰
作者简介:
龚海峰(1979—),男,博士,教授,ghf79016@163.com
基金资助:
CLC Number:
Haifeng GONG, Xin LUO, Ye PENG, Bao YU, Yang YANG, Haohua ZHANG. Desolidification structure and optimization of specially-shaped hydrocyclone three-phase separation device for industrial waste oil[J]. CIESC Journal, 2022, 73(11): 5025-5038.
龚海峰, 罗鑫, 彭烨, 余保, 杨阳, 张浩华. 工业废油异构旋流三相分离装置去固结构及优化[J]. 化工学报, 2022, 73(11): 5025-5038.
Add to citation manager EndNote|Ris|BibTeX
Do/mm | Di/mm | Lo/mm | Ds/mm | D/mm | Dh/mm | Du/mm | Dw/mm | L0/mm | L1/mm | δ/mm | L3/mm | L4/mm |
---|---|---|---|---|---|---|---|---|---|---|---|---|
18.0 | 12.0 | 45.0 | 70.0 | 26.0 | 4.0~8.0 | 3.0~9.0 | 11.0~19.0 | 124.7 | 305.5 | 25.0 | 100.0 | 50.0 |
Table 1 Structural parameters of specially-shaped hydrocyclone three-phase separation device
Do/mm | Di/mm | Lo/mm | Ds/mm | D/mm | Dh/mm | Du/mm | Dw/mm | L0/mm | L1/mm | δ/mm | L3/mm | L4/mm |
---|---|---|---|---|---|---|---|---|---|---|---|---|
18.0 | 12.0 | 45.0 | 70.0 | 26.0 | 4.0~8.0 | 3.0~9.0 | 11.0~19.0 | 124.7 | 305.5 | 25.0 | 100.0 | 50.0 |
ρo/(kg/m3) | ρw/(kg/m3) | ρp/(kg/m3) | μo/(mPa·s) | μw/(mPa·s) | dp/μm |
---|---|---|---|---|---|
863 | 998.3 | 2650 | 16.807 | 1.003 | 50 |
Table 2 Physical parameters
ρo/(kg/m3) | ρw/(kg/m3) | ρp/(kg/m3) | μo/(mPa·s) | μw/(mPa·s) | dp/μm |
---|---|---|---|---|---|
863 | 998.3 | 2650 | 16.807 | 1.003 | 50 |
Fig.7 Tangential velocity distributions of different underflow pipe diameters: (a) Tangential velocity distribution contour of different underflow pipe diameters at y=0 section; Tangential velocity distributions of different underflow pipe diameters on different sections: (b) z=100.0 mm; (c) z=200.0 mm
Fig.8 Solid particle distribution of different underflow pipe diameters: (a) The trajectory of the solid particle of different underflow pipe diameters; (b) Solid particle escape rate of different underflow pipe diameters; (c) Solid particle recovery rate of different underflow pipe diameters
Fig.10 Tangential velocity distributions of different desolidification pipe diameters: (a) Tangential velocity distribution contour of different desolidification pipe diameters at y=0 section; Tangential velocity distributions of different underflow pipe diameters on different sections: (b) z=100.0 mm, (c) z=200.0 mm
Fig.11 Solid particle distribution of different desolidification pipe diameters: (a) The trajectory of the solid particle of different desolidification pipe diameters; (b) Solid particle escape rate of different desolidification pipe diameters; (c) Solid particle recovery rate of different desolidification pipe diameters
Fig.13 Tangential velocity distributions of different sideflow pipe diameters: (a) Tangential velocity distribution contour of different sideflow pipe diameters at y=0 section; Tangential velocity distributions of different sideflow pipe diameters on different sections: (b) z=100.0 mm, (c) z=200.0 mm
Fig.14 Solid particle distribution of different sideflow pipe diameters: (a) The trajectory of the solid particle of different sideflow pipe diameters; (b) Solid particle escape rate of different sideflow pipe diameters; (c) Solid particle recovery rate of different sideflow pipe diameters
1 | 龚海峰, 戴飞, 余保, 等. 高压脉冲电场-旋流离心场联合破乳脱水装置与试验[J]. 现代化工, 2018, 38(4): 178-181. |
Gong H F, Dai F, Yu B, et al. Equipment and experiment for demulsification and dewatering by combining high voltage pulsed electric field with swirl centrifugal field[J]. Modern Chemical Industry, 2018, 38(4): 178-181. | |
2 | Geras’kina E V, Matkivskaya Y O, Chukhmanov E P, et al. Viscosity modifiers based on vinyl isobutyl ether copolymers for lubricating oils[J]. Russian Journal of Applied Chemistry, 2014, 87(11): 1649-1653. |
3 | 张贤明, 焦昭杰, 贾玉梅, 等. 工业污染废润滑油再生技术[J]. 环境科学与技术, 2008, 31(3): 39-42. |
Zhang X M, Jiao Z J, Jia Y M, et al. Regeneration techniques of waste lubricating oil[J]. Environmental Science & Technology, 2008, 31(3): 39-42. | |
4 | Zolfaghari R, Fakhru’l-Razi A, Abdullah L C, et al. Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry[J]. Separation and Purification Technology, 2016, 170: 377-407. |
5 | Kang W L, Yin X, Yang H B, et al. Demulsification performance, behavior and mechanism of different demulsifiers on the light crude oil emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 545: 197-204. |
6 | 段继海, 黄帅彪, 高昶, 等. 锥体开缝对水力旋流器固液分离性能的影响[J]. 化工学报, 2019, 70(5): 1823-1831. |
Duan J H, Huang S B, Gao C, et al. Influence of slit structure in hydrocyclone conical section on solid-liquid separation performance[J]. CIESC Journal, 2019, 70(5): 1823-1831. | |
7 | 刘鸿雁, 韩天龙, 王亚, 等. 水力旋流器新型出口挡板结构对分离性能的影响[J]. 化工学报, 2018, 69(5): 2081-2088. |
Liu H Y, Han T L, Wang Y, et al. Influence of new outlet configurations with baffle on hydrocycloneon separation performance[J]. CIESC Journal, 2018, 69(5): 2081-2088. | |
8 | Bednarski S, Listewnik J. Hydrocyclones for simultaneous removal of oil and solid particles from ships’oily waters[J]. Filtration & Separation, 1988, 25(2): 92-97. |
9 | Seureau J, Ma B F, Aurelle Y, et al. Three-phase cyclone separator: US5332500[P]. 1994-07-26. |
10 | Wang B, Yu A B. Numerical study of the gas-liquid-solid flow in hydrocyclones with different configuration of vortex finder[J]. Chemical Engineering Journal, 2008, 135(1/2): 33-42. |
11 | Qiu Z, Gong H F, Peng Y, et al. Influence of different type of inlet pipe on the separation characteristic of double-field coupling demulsification and dewatering device[J]. Separation Science and Technology, 2022, 57(11): 1813-1824. |
12 | Saidi M, Maddahian R, Farhanieh B. Numerical investigation of cone angle effect on the flow field and separation efficiency of deoiling hydrocyclones[J]. Heat and Mass Transfer, 2013, 49(2): 247-260. |
13 | Tian J Y, Ni L, Song T, et al. Numerical study of foulant-water separation using hydrocyclones enhanced by reflux device: effect of underflow pipe diameter[J]. Separation and Purification Technology, 2019, 215: 10-24. |
14 | Noroozi S, Hashemabadi S H. CFD analysis of inlet chamber body profile effects on de-oiling hydrocyclone efficiency[J]. Chemical Engineering Research and Design, 2011, 89(7): 968-977. |
15 | Li S, Li R N, Nicolleau F C G A, et al. Study on oil-water two-phase flow characteristics of the hydrocyclone under periodic excitation[J]. Chemical Engineering Research and Design, 2020, 159: 215-224. |
16 | Kuang S B, Chu K W, Yu A B, et al. Numerical study of liquid-gas-solid flow in classifying hydrocyclones: effect of feed solids concentration[J]. Minerals Engineering, 2012, 31: 17-31. |
17 | Li F, Liu P K, Yang X H, et al. Numerical simulation on the effects of different inlet pipe structures on the flow field and seperation performance in a hydrocyclone[J]. Powder Technology, 2020, 373: 254-266. |
18 | Azadi M, Azadi M, Mohebbi A. A CFD study of the effect of cyclone size on its performance parameters[J]. Journal of Hazardous Materials, 2010, 182(1/2/3): 835-841. |
19 | Jing J Q, Zhang S J, Qin M, et al. Numerical simulation study of offshore heavy oil desanding by hydrocyclones[J]. Separation and Purification Technology, 2021, 258: 118051. |
20 | 崔岩, 王建军, 孙茂生, 等. 水力旋流除砂器内液-固两相流动试验与数值模拟[J]. 石油机械, 2015, 43(11): 123-128. |
Cui Y, Wang J J, Sun M S, et al. Experiment and numerical simulation on the liquid-solid flow in hydrocyclone desander[J]. China Petroleum Machinery, 2015, 43(11): 123-128. | |
21 | Tian J Y, Wang H L, Lv W J, et al. Enhancement of pollutants hydrocyclone separation by adjusting back pressure ratio and pressure drop ratio[J]. Separation and Purification Technology, 2020, 240: 116604. |
22 | Ni L, Tian J Y, Zhao J N. Experimental study of the effect of underflow pipe diameter on separation performance of a novel de-foulant hydrocyclone with continuous underflow and reflux function[J]. Separation and Purification Technology, 2016, 171: 270-279. |
23 | Zhang Q L, Hui X R, Yan L, et al. Numerical simulation of the tar mist and dust movement process in a low-temperature dry distillation furnace[J]. Journal of Chemistry, 2020, 2020: 2356038. |
24 | Santati S, Thongsri J, Sarntima P. Modified small-volume jet nebulizer based on CFD simulation and its clinical outcomes in small asthmatic children[J]. Journal of Healthcare Engineering, 2019, 2019: 2524583. |
25 | Tang B, Xu Y X, Song X F, et al. Numerical study on the relationship between high sharpness and configurations of the vortex finder of a hydrocyclone by central composite design[J]. Chemical Engineering Journal, 2015, 278: 504-516. |
26 | Ye J X, Xu Y X, Song X F, et al. Numerical modelling and multi-objective optimization of the novel hydrocyclone for ultra-fine particles classification[J]. Chemical Engineering Science, 2019, 207: 1072-1084. |
27 | 王剑刚, 张艳红, 白兆圆, 等. 进口尺寸对旋转流场分离特征的影响[J]. 化工学报, 2014, 65(1): 205-212. |
Wang J G, Zhang Y H, Bai Z Y, et al. Effects of inlet size on separation flow field inside hydrocyclone[J]. CIESC Journal, 2014, 65(1): 205-212. | |
28 | Cheng J C, Li Q, Yang C, et al. CFD-PBE simulation of a bubble column in OpenFOAM[J]. Chinese Journal of Chemical Engineering, 2018, 26(9): 1773-1784. |
29 | Luo H A, Svendsen H F. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE Journal, 1996, 42(5): 1225-1233. |
30 | Zhang Y, Wang Y, Li F, et al. Optimal design of the linkage between two downhole hydrocyclones in series[C]//Proceedings of ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. San Francisco, 2014. |
31 | Gong H F, Yang Y, Yu B, et al. Coalescence characteristics of droplets dispersed in oil subjected to electric and centrifugal fields[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648: 129398. |
32 | Tian J Y, Ni L, Song T, et al. CFD simulation of hydrocyclone-separation performance influenced by reflux device and different vortex-finder lengths[J]. Separation and Purification Technology, 2020, 233: 116013. |
33 | 王志斌, 陈文梅, 褚良银, 等. 旋流分离器中固体颗粒随机轨道的数值模拟及分离特性分析[J]. 机械工程学报, 2006, 42(6): 34-39. |
Wang Z B, Chen W M, Chu L Y, et al. Numerical simulation of particale motion trajectory in a hydrocyclone using a stochastic trajectory model[J]. Chinese Journal of Mechanical Engineering, 2006, 42(6): 34-39. | |
34 | Gong H F, Yu B, Dai F, et al. Simulation on performance of a demulsification and dewatering device with coupling double fields: swirl centrifugal field and high-voltage electric field[J]. Separation and Purification Technology, 2018, 207: 124-132. |
35 | Vakamalla T R, Kumbhar K S, Gujjula R, et al. Computational and experimental study of the effect of inclination on hydrocyclone performance[J]. Separation and Purification Technology, 2014, 138: 104-117. |
36 | Gong H F, Li W L, Zhang X M, et al. Effects of droplet dynamic characteristics on the separation performance of a demulsification and dewatering device coupling electric and centrifugal fields[J]. Separation and Purification Technology, 2021, 257: 117905. |
37 | Sun X M, Wei L. Liquid-solid hydrocyclone numerical simulation and separation efficiency analysis[J]. Advanced Materials Research, 2014, 1037: 103-106. |
[1] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[2] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[3] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[4] | Yaxin ZHAO, Xueqin ZHANG, Rongzhu WANG, Guo SUN, Shanjing YAO, Dongqiang LIN. Removal of monoclonal antibody aggregates with ion exchange chromatography by flow-through mode [J]. CIESC Journal, 2023, 74(9): 3879-3887. |
[5] | Shuang LIU, Linzhou ZHANG, Zhiming XU, Suoqi ZHAO. Study on molecular level composition correlation of viscosity of residual oil and its components [J]. CIESC Journal, 2023, 74(8): 3226-3241. |
[6] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[7] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[8] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[9] | Jiayi ZHANG, Jiali HE, Jiangpeng XIE, Jian WANG, Yu ZHAO, Dongqiang ZHANG. Research progress of pervaporation technology for N-methylpyrrolidone recovery in lithium battery production [J]. CIESC Journal, 2023, 74(8): 3203-3215. |
[10] | Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid [J]. CIESC Journal, 2023, 74(8): 3386-3393. |
[11] | Linjing YUE, Yihan LIAO, Yuan XUE, Xuejie LI, Yuxing LI, Cuiwei LIU. Study on influence of pit defects on cavitation flow characteristics of throat of thick orifice plates [J]. CIESC Journal, 2023, 74(8): 3292-3308. |
[12] | Yuanliang ZHANG, Xinqi LUAN, Weige SU, Changhao LI, Zhongxing ZHAO, Liqin ZHOU, Jianmin CHEN, Yan HUANG, Zhenxia ZHAO. Study on selective extraction of nicotine by ionic liquids composite extractant and DFT calculation [J]. CIESC Journal, 2023, 74(7): 2947-2956. |
[13] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[14] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[15] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||