CIESC Journal ›› 2022, Vol. 73 ›› Issue (11): 4893-4902.DOI: 10.11949/0438-1157.20220953
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Pengcheng JING(), Litao CHEN(), Chuanliang YAN, Chuanxiang JIANG, Yuxiang XIA, Changhong YU, Haotian WANG
Received:
2022-07-06
Revised:
2022-10-17
Online:
2022-12-06
Published:
2022-11-05
Contact:
Litao CHEN
敬鹏程(), 陈立涛(), 闫传梁, 姜传祥, 夏煜翔, 于常宏, 王昊天
通讯作者:
陈立涛
作者简介:
敬鹏程(2000—),男,硕士研究生,jingpc@qq.com
基金资助:
CLC Number:
Pengcheng JING, Litao CHEN, Chuanliang YAN, Chuanxiang JIANG, Yuxiang XIA, Changhong YU, Haotian WANG. Study on growth process of semiclathrate hydrate on the surface of TBAB solution droplets suspended by ultrasonic[J]. CIESC Journal, 2022, 73(11): 4893-4902.
敬鹏程, 陈立涛, 闫传梁, 姜传祥, 夏煜翔, 于常宏, 王昊天. 超声波悬浮TBAB溶液液滴表面半笼型水合物生长过程研究[J]. 化工学报, 2022, 73(11): 4893-4902.
Add to citation manager EndNote|Ris|BibTeX
序号 | 悬浮液滴初始条件和描述 | 长半轴 | 短半轴 | ||||
---|---|---|---|---|---|---|---|
生成水合物前/mm | 生成水合物后/mm | 变化率/% | 生成水合物前/mm | 生成水合物后/mm | 变化率/% | ||
1 | 液滴初始直径0.88 mm,TBAB质量分数15%( | 0.440 | 0.523 | +18.9 | 0.330 | 0.291 | -11.8 |
2 | 液滴初始直径1.96 mm,TBAB质量分数20%( | 0.980 | 1.023 | +4.4 | 0.619 | 0.567 | -8.4 |
3 | 液滴初始直径1.13 mm,TBAB质量分数20%( | 0.565 | 0.636 | +12.6 | 0.381 | 0.311 | -18.4 |
4 | 液滴初始直径1.95 mm,TBAB质量分数25%( | 0.975 | 1.059 | +8.6 | 0.639 | 0.572 | -10.5 |
Table 1 Changes of geometric parameters of TBAB levitation droplets before and after hydrate formation
序号 | 悬浮液滴初始条件和描述 | 长半轴 | 短半轴 | ||||
---|---|---|---|---|---|---|---|
生成水合物前/mm | 生成水合物后/mm | 变化率/% | 生成水合物前/mm | 生成水合物后/mm | 变化率/% | ||
1 | 液滴初始直径0.88 mm,TBAB质量分数15%( | 0.440 | 0.523 | +18.9 | 0.330 | 0.291 | -11.8 |
2 | 液滴初始直径1.96 mm,TBAB质量分数20%( | 0.980 | 1.023 | +4.4 | 0.619 | 0.567 | -8.4 |
3 | 液滴初始直径1.13 mm,TBAB质量分数20%( | 0.565 | 0.636 | +12.6 | 0.381 | 0.311 | -18.4 |
4 | 液滴初始直径1.95 mm,TBAB质量分数25%( | 0.975 | 1.059 | +8.6 | 0.639 | 0.572 | -10.5 |
序号 | 液滴初始条件和描述 | 液滴生成方式 | 生长速率/(mm2/min) |
---|---|---|---|
1 | 液滴直径4.55 mm, TBAB质量分数15%( | 悬挂 | 1.300 |
2 | 液滴直径0.88 mm, TBAB质量分数15%( | 超声波悬浮 | 3.647 |
Table 2 Growth rate of TBAB hydrate crystal in different growth ways
序号 | 液滴初始条件和描述 | 液滴生成方式 | 生长速率/(mm2/min) |
---|---|---|---|
1 | 液滴直径4.55 mm, TBAB质量分数15%( | 悬挂 | 1.300 |
2 | 液滴直径0.88 mm, TBAB质量分数15%( | 超声波悬浮 | 3.647 |
序号 | 超声波悬浮 | 悬挂 | ||
---|---|---|---|---|
诱导时间/min | 是否生成 | 诱导时间/min | 是否生成 | |
1 | 12 | 是 | 15(水合物晶种诱导) | 是 |
2 | 15 | 是 | 30(水合物晶种诱导) | 是 |
3 | 56 | 是 | 270 | 否 |
4 | 82 | 是 | 300 | 否 |
5 | 100 | 是 | 305 | 否 |
6 | 140 | 是 | 348 | 否 |
7 | 350 | 否 | 870 | 否 |
8 | 545 | 否 | 900 | 否 |
Table 3 Comparison of induction time in different growth ways
序号 | 超声波悬浮 | 悬挂 | ||
---|---|---|---|---|
诱导时间/min | 是否生成 | 诱导时间/min | 是否生成 | |
1 | 12 | 是 | 15(水合物晶种诱导) | 是 |
2 | 15 | 是 | 30(水合物晶种诱导) | 是 |
3 | 56 | 是 | 270 | 否 |
4 | 82 | 是 | 300 | 否 |
5 | 100 | 是 | 305 | 否 |
6 | 140 | 是 | 348 | 否 |
7 | 350 | 否 | 870 | 否 |
8 | 545 | 否 | 900 | 否 |
实验序号 | TBAB质量分数/% | 诱导时间/min | 是否生成 | 是否有气泡 |
---|---|---|---|---|
1 | 15 | 12 | 是 | 否 |
2 | 15 | 15 | 是 | 否 |
3 | 15 | 56 | 是 | 是 |
4 | 15 | 82 | 是 | 是 |
5 | 15 | 100 | 是 | 是 |
6 | 15 | 140 | 是 | 是 |
7 | 15 | 545 | 否 | 是 |
Table 4 Comparison of induction time of droplets with or without bubble
实验序号 | TBAB质量分数/% | 诱导时间/min | 是否生成 | 是否有气泡 |
---|---|---|---|---|
1 | 15 | 12 | 是 | 否 |
2 | 15 | 15 | 是 | 否 |
3 | 15 | 56 | 是 | 是 |
4 | 15 | 82 | 是 | 是 |
5 | 15 | 100 | 是 | 是 |
6 | 15 | 140 | 是 | 是 |
7 | 15 | 545 | 否 | 是 |
1 | Oyama H, Shimada W, Ebinuma T, et al. Phase diagram, latent heat, and specific heat of TBAB semiclathrate hydrate crystals[J]. Fluid Phase Equilibria, 2005, 234(1/2): 131-135. |
2 | Ma Z W, Zhang P, Wang R Z, et al. Forced flow and convective melting heat transfer of clathrate hydrate slurry in tubes[J]. International Journal of Heat and Mass Transfer, 2010, 53(19/20): 3745-3757. |
3 | Li M Y, Gao M, Zuo Q R, et al. Experimental and theoretical investigation on hydrate nucleation in TBAB droplets[J]. Fuel, 2022, 308: 121994. |
4 | Ohmura R, Shimada W, Uchida T, et al. Clathrate hydrate crystal growth in liquid water saturated with a hydrate-forming substance: variations in crystal morphology[J]. Philosophical Magazine, 2004, 84(1): 1-16. |
5 | Shi X J, Zhang P. Crystallization of tetra-n-butyl ammonium bromide clathrate hydrate slurry and the related heat transfer characteristics[J]. Energy Conversion and Management, 2014, 77: 89-97. |
6 | Saito K, Kishimoto M, Tanaka R, et al. Crystal growth of clathrate hydrate at the interface between hydrocarbon gas mixture and liquid water[J]. Crystal Growth & Design, 2011, 11(1): 295-301. |
7 | 钱文强, 张鹏. 四丁基溴化铵水合物结晶过程的可视化研究[J]. 制冷学报, 2012, 33(3): 35-39. |
Qian W Q, Zhang P. Visualization study on growth process of tetra-n-butyl ammonium bromide hydrate[J]. Journal of Refrigeration, 2012, 33(3): 35-39. | |
8 | 叶楠, 张鹏. TBAB水合物晶体生长过程的实验研究[J]. 过程工程学报, 2011, 11(5): 823-827. |
Ye N, Zhang P. Investigation on the growth of TBAB clathrate hydrate crystals[J]. The Chinese Journal of Process Engineering, 2011, 11(5): 823-827. | |
9 | 李梦钖, 高明, 左启蓉, 等. 过冷壁面液滴中四丁基溴化铵水合物生成的可视化研究[J]. 化工学报, 2021, 72(4): 2094-2101. |
Li M Y, Gao M, Zuo Q R, et al. Visualization investigation of TBAB hydrate formation in droplets on supercooled wall surfaces[J]. CIESC Journal, 2021, 72(4): 2094-2101. | |
10 | 钟栋梁, 杨晨, 刘道平. 静止悬垂水滴形成甲烷水合物的生长动力学[J]. 化学反应工程与工艺, 2010, 26(1): 52-57. |
Zhong D L, Yang C, Liu D P. Kinetics of methane hydrate formation from static pendant water droplets[J]. Chemical Reaction Engineering and Technology, 2010, 26(1): 52-57. | |
11 | Zang D Y, Yu Y K, Chen Z, et al. Acoustic levitation of liquid drops: dynamics, manipulation and phase transitions[J]. Advances in Colloid and Interface Science, 2017, 243: 77-85. |
12 | Park S S, Kim N J. Study on methane hydrate formation using ultrasonic waves[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(5): 1668-1672. |
13 | 孙始财, 刘玉峰, 吕爱钟, 等. 超声波与表面活性剂协同影响水合物诱导期[J]. 化工学报, 2006, 57(1): 160-162. |
Sun S C, Liu Y F, Lyu A Z, et al. Effect of ultrasonic and surfactant on induction time of natural gas hydrate[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(1): 160-162. | |
14 | 孙始财, 杨震东, 谷林霖, 等. 超声波对CO2水合物生成过程的影响[J]. 科学技术与工程, 2022, 22(2): 628-634. |
Sun S C, Yang Z D, Gu L L, et al. Effects of ultrasonic on CO2 hydrate formation[J]. Science Technology and Engineering, 2022, 22(2): 628-634. | |
15 | Hong H J, Ko C H, Song M H, et al. Effect of ultrasonic waves on dissociation kinetics of tetrafluoroethane (CH2FCF3) hydrate[J]. Journal of Industrial and Engineering Chemistry, 2016, 41: 183-189. |
16 | 时濛. 有限空间内四丁基溴化铵水合物生长动力学研究[D]. 广州: 华南理工大学, 2017. |
Shi M. Kinetic investigation of tetra-n-butylammonium bromide hydrate formation in confined space[D]. Guangzhou: South China University of Technology, 2017. | |
17 | 孙长宇, 黄强, 陈光进. 气体水合物形成的热力学与动力学研究进展[J]. 化工学报, 2006, 57(5): 1031-1039. |
Sun C Y, Huang Q, Chen G J. Progress of thermodynamics and kinetics of gas hydrate formation[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(5): 1031-1039. | |
18 | Zhong D L, Yang C, Liu D P, et al. Experimental investigation of methane hydrate formation on suspended water droplets[J]. Journal of Crystal Growth, 2011, 327(1): 237-244. |
19 | 黄玲艳, 刘中良, 勾昱君, 等. 壁面温度对疏水表面上水滴冻结的影响[J]. 工程热物理学报, 2012, 33(6): 1009-1012. |
Huang L Y, Liu Z L, Gou Y J, et al. Effect of cold plate temperature on water droplet freezing on hydrophobic surface[J]. Journal of Engineering Thermophysics, 2012, 33(6): 1009-1012. | |
20 | 管国锋, 赵汝溥. 化工原理[M]. 4版. 北京: 化学工业出版社, 2015. |
Guan G F, Zhao R P. Unit Operation[M]. 4th ed. Beijing: Chemical Industry Press, 2015. | |
21 | 苏亚欣. 传热学[M]. 武汉: 华中科技大学出版社, 2009. |
Su Y X. Heat Transfer[M]. Wuhan: Huazhong University of Science and Technology Press, 2009. | |
22 | Legay M, Gondrexon N, le Person S, et al. Enhancement of heat transfer by ultrasound: review and recent advances[J]. International Journal of Chemical Engineering, 2011, 2011: 670108. |
23 | 梁德青, 樊栓狮, 余国保. 用超声波生产水合物及水合物浆的装置与方法: 100341615C[P]. 2007-10-10. |
Liang D Q, Fan S S, Yu G B. Method and device for producing hydrate and hydrate slurry using supersonic wave: 100341615C[P]. 2007-10-10. | |
24 | 刘永红, 郭开华, 梁德青, 等. 超声波对HCFC-141b水合物结晶过程的影响[J]. 武汉理工大学学报, 2002, 24(12): 21-23. |
Liu Y H, Guo K H, Liang D Q, et al. Experimental study on crystallizing process of HCFC-141b hydrate by ultrasonic[J]. Journal of Wuhan University of Technology, 2002, 24(12): 21-23. | |
25 | 孙始财, 樊栓狮. 超声波作用下天然气水合物的形成[J]. 化学通报, 2005, 68(11): 867-870. |
Sun S C, Fan S S. The formation of natural gas hydrates with ultrasonic[J]. Chemistry, 2005, 68(11): 867-870. | |
26 | Kashchiev D, Firoozabadi A. Induction time in crystallization of gas hydrates[J]. Journal of Crystal Growth, 2003, 250(3/4): 499-515. |
27 | 丘泰球, 李月花, 陈树功. 声场对蔗糖溶液结晶成核过程的影响[J]. 声学技术, 1993, 12(1): 15-20. |
Qiu T Q, Li Y H, Chen S G. Effect of sound field on nucleation process of sucrose solution crystallization [J]. Technical Acoustics, 1993, 12(1): 15-20. | |
28 | 刘永红, 郭开华, 梁德青, 等. 超声波作用下的制冷剂水合物结晶过程研究[J]. 工程热物理学报, 2003, 24(3): 385-387. |
Liu Y H, Guo K H, Liang D Q, et al. Study on refrigerant hydrate crystallization process in the action of ultrasonic[J]. Journal of Engineering Thermophysics, 2003, 24(3): 385-387. | |
29 | Mason T J. Power Ultrasound in Food Processing—the Way Forward[M]. Glasgow, UK: Blackie Academic and Professional, 1998. |
30 | Zang D Y, Li L, Di W L, et al. Inducing drop to bubble transformation via resonance in ultrasound[J]. Nature Communications, 2018, 9: 3546. |
[1] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Aiqiang CHEN, Yanqi DAI, Yue LIU, Bin LIU, Hanming WU. Influence of substrate temperature on HFE7100 droplet evaporation process [J]. CIESC Journal, 2023, 74(S1): 191-197. |
[4] | Mingxi LIU, Yanpeng WU. Simulation analysis of effect of diameter and length of light pipes on heat transfer [J]. CIESC Journal, 2023, 74(S1): 206-212. |
[5] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[6] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[7] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[8] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[9] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[10] | Cong QI, Zi DING, Jie YU, Maoqing TANG, Lin LIANG. Study on solar thermoelectric power generation characteristics based on selective absorption nanofilm [J]. CIESC Journal, 2023, 74(9): 3921-3930. |
[11] | Ke LI, Jian WEN, Biping XIN. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank [J]. CIESC Journal, 2023, 74(9): 3786-3796. |
[12] | Tianhua CHEN, Zhaoxuan LIU, Qun HAN, Chengbin ZHANG, Wenming LI. Research progress and influencing factors of the heat transfer enhancement of spray cooling [J]. CIESC Journal, 2023, 74(8): 3149-3170. |
[13] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[14] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[15] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||