CIESC Journal ›› 2022, Vol. 73 ›› Issue (10): 4625-4637.DOI: 10.11949/0438-1157.20220764
• Energy and environmental engineering • Previous Articles Next Articles
Ming PENG1(), Qiangfeng XIA2, Lixiang JIANG2, Ruiyuan ZHANG1, Lingyi GUO1, Li CHEN1(), Wenquan TAO1
Received:
2022-05-30
Revised:
2022-07-27
Online:
2022-11-02
Published:
2022-10-05
Contact:
Li CHEN
彭明1(), 夏强峰2, 蒋理想2, 张瑞元1, 郭凌燚1, 陈黎1(), 陶文铨1
通讯作者:
陈黎
作者简介:
彭明(1991—),男,博士研究生, pengming@stu.xjtu.edu.cn
基金资助:
CLC Number:
Ming PENG, Qiangfeng XIA, Lixiang JIANG, Ruiyuan ZHANG, Lingyi GUO, Li CHEN, Wenquan TAO. Study on the effect of gas channel arrangement on the performance of air-cooled fuel cells[J]. CIESC Journal, 2022, 73(10): 4625-4637.
彭明, 夏强峰, 蒋理想, 张瑞元, 郭凌燚, 陈黎, 陶文铨. 流道布置对风冷燃料电池性能影响的研究[J]. 化工学报, 2022, 73(10): 4625-4637.
Add to citation manager EndNote|Ris|BibTeX
变量描述 | 数值 | 文献 |
---|---|---|
孔隙率ε | CLs/MPLs/GDLs: 0.4/0.4/0.78 | [ |
渗透率K | CLs/MPLs/GDLs: 1×10-13/7×10-13/2×10-12 m2 | [ |
接触角θ | CLs/MPLs/GDLs: 120°/150°/140° | [ |
电子电导率κele | CLs/MPLs/GDLs/BPs: 750/750/750/20000 S·m-1 | [ |
热导率ks | MEM/CLs/MPLs/GDLs/BPs: 0.95/1/0.83/1/20 W·m-2·K-1 | [ |
比热容cp | MEM/CLs/MPLs/GDLs/BPs: 833/3300/800/568/1580 J·kg-1·K-1 | [ |
扩散系数D | O2/H2/H2O: 3.732×10-5/5.717×10-5/5.717×10-5 m2·s-1 | [ |
表面张力σ | 0.0625 N·m-1 | [ |
蒸汽凝结相变潜热hcon | 2.308×106 J·kg-1 | [ |
蒸汽水合潜热hhy | 3.462×106 J·kg-1 | [ |
无量纲相变速率Shcon/evap | 2.04×10-3 | [ |
孔比表面积Apore | 2.0×105 m-1 | [ |
孔径特征长度d | 5.0×10-6 m | |
相变速率系数γwd | 1.0 s-1 | [ |
电解质体积分数ω | 0.22 | [ |
阳极交换电流密度 | ||
阴极交换电流密度 | ||
质子电导率κion | [ |
Table 1 Basic parameters in fuel cell model
变量描述 | 数值 | 文献 |
---|---|---|
孔隙率ε | CLs/MPLs/GDLs: 0.4/0.4/0.78 | [ |
渗透率K | CLs/MPLs/GDLs: 1×10-13/7×10-13/2×10-12 m2 | [ |
接触角θ | CLs/MPLs/GDLs: 120°/150°/140° | [ |
电子电导率κele | CLs/MPLs/GDLs/BPs: 750/750/750/20000 S·m-1 | [ |
热导率ks | MEM/CLs/MPLs/GDLs/BPs: 0.95/1/0.83/1/20 W·m-2·K-1 | [ |
比热容cp | MEM/CLs/MPLs/GDLs/BPs: 833/3300/800/568/1580 J·kg-1·K-1 | [ |
扩散系数D | O2/H2/H2O: 3.732×10-5/5.717×10-5/5.717×10-5 m2·s-1 | [ |
表面张力σ | 0.0625 N·m-1 | [ |
蒸汽凝结相变潜热hcon | 2.308×106 J·kg-1 | [ |
蒸汽水合潜热hhy | 3.462×106 J·kg-1 | [ |
无量纲相变速率Shcon/evap | 2.04×10-3 | [ |
孔比表面积Apore | 2.0×105 m-1 | [ |
孔径特征长度d | 5.0×10-6 m | |
相变速率系数γwd | 1.0 s-1 | [ |
电解质体积分数ω | 0.22 | [ |
阳极交换电流密度 | ||
阴极交换电流密度 | ||
质子电导率κion | [ |
几何结构 | 数值/mm |
---|---|
阴极流道宽度 | 1.2 |
阴极流道深度 | 1.7 |
阳极流道宽度 | 1.2 |
阳极流道深度 | 0.3 |
扩散层厚度 | 0.25 |
微孔层厚度 | 0.03 |
催化层厚度 | 0.03 |
质子交换膜厚度 | 0.025 |
阴极肋宽度 | 0.5 |
阳极肋宽度 | 0.5 |
流道长度 | 50 |
Table 2 Geometric dimensions of components in the computational domain
几何结构 | 数值/mm |
---|---|
阴极流道宽度 | 1.2 |
阴极流道深度 | 1.7 |
阳极流道宽度 | 1.2 |
阳极流道深度 | 0.3 |
扩散层厚度 | 0.25 |
微孔层厚度 | 0.03 |
催化层厚度 | 0.03 |
质子交换膜厚度 | 0.025 |
阴极肋宽度 | 0.5 |
阳极肋宽度 | 0.5 |
流道长度 | 50 |
Fig.14 Distribution of relative humidity (a) and liquid water saturation (b) in through-plane cross section of cathode membrane electrode assembly; Liquid water saturation distribution in the middle plane of cathode catalytic layer (c)
1 | Waharte S, Trigoni N. Supporting search and rescue operations with UAVs[C]//2010 International Conference on Emerging Security Technologies. Canterbury, UK: IEEE, 2010: 142-147. |
2 | Nex F, Remondino F. UAV for 3D mapping applications: a review[J]. Applied Geomatics, 2014, 6(1): 1-15. |
3 | Stolaroff J K, Samaras C, O'Neill E R, et al. Energy use and life cycle greenhouse gas emissions of drones for commercial package delivery[J]. Nature Communications, 2018, 9: 409. |
4 | Torresan C, Berton A, Carotenuto F, et al. Forestry applications of UAVs in Europe: a review[J]. International Journal of Remote Sensing, 2017, 38(8/9/10): 2427-2447. |
5 | Puri V, Nayyar A, Raja L. Agriculture drones: a modern breakthrough in precision agriculture[J]. Journal of Statistics and Management Systems, 2017, 20(4): 507-518. |
6 | 李特, 陶瑞祥, 张锐, 等. 典型发热缺陷复合绝缘子红外特征及无人机红外测试参数选择[J]. 高电压技术, 2022, 48(3): 865-875. |
Li T, Tao R X, Zhang R, et al. Infrared characteristic of typical composite insulator heating defects and selection of field unmanned aerial vehicle infrared test parameters[J]. High Voltage Engineering, 2022, 48(3): 865-875. | |
7 | Peng M, Chen L, Zhang R Y, et al. Improvement of thermal and water management of air-cooled polymer electrolyte membrane fuel cells by adding porous media into the cathode gas channel[J]. Electrochimica Acta, 2022, 412: 140154. |
8 | Dutczak J. Issues related to fuel cells application to small drones propulsion[J]. IOP Conference Series: Materials Science and Engineering, 2018, 421: 042014. |
9 | Bhaiya M, Putz A, Secanell M. Analysis of non-isothermal effects on polymer electrolyte fuel cell electrode assemblies[J]. Electrochimica Acta, 2014, 147: 294-309. |
10 | Zhang G S, Kandlikar S G. A critical review of cooling techniques in proton exchange membrane fuel cell stacks[J]. International Journal of Hydrogen Energy, 2012, 37(3): 2412-2429. |
11 | 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019. |
Tao W Q. Heat Transfer[M]. 5th ed. Beijing: Higher Education Press, 2019. | |
12 | Berning T, Knudsen Kær S. A thermodynamic analysis of an air-cooled proton exchange membrane fuel cell operated in different climate regions[J]. Energies, 2020, 13(10): 2611. |
13 | Yu X X, Chang H W, Zhao J J, et al. Effects of anode flow channel on performance of air-cooled proton exchange membrane fuel cell[J]. Energy Reports, 2022, 8: 4443-4452. |
14 | Kim T, Kwon S. Design and development of a fuel cell-powered small unmanned aircraft[J]. International Journal of Hydrogen Energy, 2012, 37(1): 615-622. |
15 | Hu M R, Li Z P, Cao G Y. Analysis on the rapid voltage drop based on a new air-cooled PEMFC stack design[J]. International Journal of Electrochemical Science, 2019, 14(1): 651-661. |
16 | 杨长幸, 赵润贤, 潘瑞昕, 等. 空冷型质子交换膜燃料电池水热管理的研究现状[J]. 电源技术, 2022, 46(4): 346-350. |
Yang C X, Zhao R X, Pan R X, et al. Research status of water and thermal management of air-cooled proton exchange membrane fuel cells[J]. Chinese Journal of Power Sources, 2022, 46(4): 346-350. | |
17 | 赵强, 郭航, 叶芳, 等. 质子交换膜燃料电池流场板研究进展[J]. 化工学报, 2020, 71(5): 1943-1963. |
Zhao Q, Guo H, Ye F, et al. State of the art of flow field plates of proton exchange membrane fuel cells[J]. CIESC Journal, 2020, 71(5): 1943-1963. | |
18 | Matian M, Marquis A, Brandon N. Model based design and test of cooling plates for an air-cooled polymer electrolyte fuel cell stack[J]. International Journal of Hydrogen Energy, 2011, 36(10): 6051-6066. |
19 | 沈俊, 周兵, 邱子朝, 等. 质子交换膜燃料电池强化传质[J]. 化工学报, 2014, 65(S1): 421-425. |
Shen J, Zhou B, Qiu Z Z, et al. Mass transfer enhancement of proton exchange membrane fuel cell[J]. CIESC Journal, 2014, 65(S1): 421-425. | |
20 | Qiu D K, Peng L F, Tang J Y, et al. Numerical analysis of air-cooled proton exchange membrane fuel cells with various cathode flow channels[J]. Energy, 2020, 198: 117334. |
21 | Zhao C, Xing S, Liu W, et al. Air and H2 feed systems optimization for open-cathode proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2021, 46(21): 11940-11951. |
22 | Zhao C, Xing S, Liu W, et al. Performance and thermal optimization of different length-width ratio for air-cooled open-cathode fuel cell[J]. Renewable Energy, 2021, 178: 1250-1260. |
23 | 陈黎, 栾辉宝, 陶文铨. PEMFC气体通道表面润湿特性对气体扩散层中水分布的影响[J]. 化工学报, 2011, 62(S1): 19-25. |
Chen L, Luan H B, Tao W Q. Effects of gas channel wall wettability on liquid water distribution and transport in gas diffusion layer of proton exchange membrane fuel cell[J]. CIESC Journal, 2011, 62(S1): 19-25. | |
24 | Pløger L J, Fallah R, Al Shakhshir S, et al. Improving the performance of an air-cooled fuel cell stack by a turbulence inducing grid[J]. ECS Transactions, 2018, 86(13): 77-87. |
25 | Song K, Fan Z X, Hu X, et al. Effect of adding vortex promoter on the performance improvement of active air-cooled proton exchange membrane fuel cells[J]. Energy, 2021, 223: 120104. |
26 | Lind A, Yin C G, Berning T. A computational fluid dynamics analysis of heat transfer in an air-cooled proton exchange membrane fuel cell with transient boundary conditions[J]. ECS Transactions, 2020, 98(9): 255-263. |
27 | Wang Z X, Tongsh C, Wang B W, et al. Operation characteristics of open-cathode proton exchange membrane fuel cell with different cathode flow fields[J]. Sustainable Energy Technologies and Assessments, 2022, 49: 101681. |
28 | 王学科, 王树博, 潘元, 等. 阳极进气湿度对质子交换膜水含量及电流密度分布影响[J]. 化工学报, 2015, 66(S2): 342-348. |
Wang X K, Wang S B, Pan Y, et al. Effect of anode inlet gas humidification on PEM water contents and current density distribution[J]. CIESC Journal, 2015, 66(S2): 342-348. | |
29 | Zhang G B, Fan L H, Sun J, et al. A 3D model of PEMFC considering detailed multiphase flow and anisotropic transport properties[J]. International Journal of Heat and Mass Transfer, 2017, 115: 714-724. |
30 | Huo S, Jiao K, Park J W. On the water transport behavior and phase transition mechanisms in cold start operation of PEM fuel cell[J]. Applied Energy, 2019, 233/234: 776-788. |
31 | Fan L H, Zhang G B, Jiao K. Characteristics of PEMFC operating at high current density with low external humidification[J]. Energy Conversion and Management, 2017, 150: 763-774. |
32 | Jiao K, Li X G. Water transport in polymer electrolyte membrane fuel cells[J]. Progress in Energy and Combustion Science, 2011, 37(3): 221-291. |
33 | Berning T. On water transport in polymer electrolyte membranes during the passage of current[J]. International Journal of Hydrogen Energy, 2011, 36(15): 9341-9344. |
34 | Mu Y T, He P, Ding J, et al. Modeling of the operation conditions on the gas purging performance of polymer electrolyte membrane fuel cells[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11788-11802. |
35 | He P, Mu Y T, Park J W, et al. Modeling of the effects of cathode catalyst layer design parameters on performance of polymer electrolyte membrane fuel cell[J]. Applied Energy, 2020, 277: 115555. |
36 | Ding J, Mu Y T, Zhai S, et al. Numerical study of gas purge in polymer electrolyte membrane fuel cell[J]. International Journal of Heat and Mass Transfer, 2016, 103: 744-752. |
37 | 唐嘉钰, 邱殿凯, 彭林法. 空气冷却型PEMFC多场耦合仿真分析[J]. 电池, 2019, 49(3): 186-190. |
Tang J Y, Qiu D K, Peng L F. Multi-field coupled simulation and analysis of air-cooled PEMFC[J]. Battery Bimonthly, 2019, 49(3): 186-190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||