CIESC Journal ›› 2022, Vol. 73 ›› Issue (12): 5605-5614.DOI: 10.11949/0438-1157.20221095
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Huifang NIU1,2(), Lunjing YAN1,2(), Peng LYU3, Xufeng ZHANG1,2, Meijun WANG1,2, Jiao KONG1,2, Weiren BAO1,2, Liping CHANG1,2()
Received:
2022-08-01
Revised:
2022-11-01
Online:
2023-01-17
Published:
2022-12-05
Contact:
Lunjing YAN, Liping CHANG
牛卉芳1,2(), 闫伦靖1,2(), 吕鹏3, 张旭峰1,2, 王美君1,2, 孔娇1,2, 鲍卫仁1,2, 常丽萍1,2()
通讯作者:
闫伦靖,常丽萍
作者简介:
牛卉芳(1996—),女,硕士研究生,1013162598@qq.com
基金资助:
CLC Number:
Huifang NIU, Lunjing YAN, Peng LYU, Xufeng ZHANG, Meijun WANG, Jiao KONG, Weiren BAO, Liping CHANG. Preparation and analysis of carbon aerogel microspheres based on coal tar pitch[J]. CIESC Journal, 2022, 73(12): 5605-5614.
牛卉芳, 闫伦靖, 吕鹏, 张旭峰, 王美君, 孔娇, 鲍卫仁, 常丽萍. 煤焦油沥青基碳气凝胶微球的制备及分析[J]. 化工学报, 2022, 73(12): 5605-5614.
Add to citation manager EndNote|Ris|BibTeX
Proximate analysis/%(质量) | Ultimate analysis/%(质量),daf | ||||||
---|---|---|---|---|---|---|---|
Mad | Ad | Vdaf | C | H | O① | N | S |
0.27 | 0.09 | 76.22 | 85.70 | 6.54 | 6.44 | 1.10 | 0.22 |
Table 1 Proximate and ultimate analyses of coal tar pitch
Proximate analysis/%(质量) | Ultimate analysis/%(质量),daf | ||||||
---|---|---|---|---|---|---|---|
Mad | Ad | Vdaf | C | H | O① | N | S |
0.27 | 0.09 | 76.22 | 85.70 | 6.54 | 6.44 | 1.10 | 0.22 |
No. | 煤焦油沥青与交联剂比例/ (g/ml) | 煤焦油沥青与溶剂比例/(g/ml) | 煤焦油沥青与催化剂比例/ (g/ml) | 密度/(g/cm3) |
---|---|---|---|---|
1 | 0.9 | 0.06 | 3 | 0.218 |
2 | 0.9 | 0.08 | 5 | 0.179 |
3 | 0.9 | 0.10 | 8 | 0.231 |
4 | 0.9 | 0.12 | 10 | 0.248 |
5 | 0.7 | 0.06 | 5 | 0.189 |
6 | 0.7 | 0.08 | 3 | 0.224 |
7 | 0.7 | 0.10 | 10 | 0.228 |
8 | 0.7 | 0.12 | 8 | 0.231 |
9 | 0.5 | 0.06 | 8 | 0.165 |
10 | 0.5 | 0.08 | 10 | 0.179 |
11 | 0.5 | 0.10 | 3 | 0.259 |
12 | 0.5 | 0.12 | 5 | 0.262 |
13 | 0.3 | 0.06 | 10 | 0.130 |
14 | 0.3 | 0.08 | 8 | 0.163 |
15 | 0.3 | 0.10 | 5 | 0.207 |
16 | 0.3 | 0.12 | 3 | 0.250 |
K1j | 0.876 | 0.702 | 0.951 | |
K2j | 0.872 | 0.745 | 0.837 | |
K3j | 0.865 | 0.925 | 0.790 | |
K4j | 0.750 | 0.991 | 0.785 | |
k1j | 0.219 | 0.176 | 0.238 | |
k2j | 0.218 | 0.186 | 0.209 | |
k3j | 0.216 | 0.231 | 0.198 | |
k4j | 0.188 | 0.248 | 0.196 | |
R | 0.031 | 0.072 | 0.042 |
Table 2 Orthogonal test for preparing carbon aerogel microspheres gel
No. | 煤焦油沥青与交联剂比例/ (g/ml) | 煤焦油沥青与溶剂比例/(g/ml) | 煤焦油沥青与催化剂比例/ (g/ml) | 密度/(g/cm3) |
---|---|---|---|---|
1 | 0.9 | 0.06 | 3 | 0.218 |
2 | 0.9 | 0.08 | 5 | 0.179 |
3 | 0.9 | 0.10 | 8 | 0.231 |
4 | 0.9 | 0.12 | 10 | 0.248 |
5 | 0.7 | 0.06 | 5 | 0.189 |
6 | 0.7 | 0.08 | 3 | 0.224 |
7 | 0.7 | 0.10 | 10 | 0.228 |
8 | 0.7 | 0.12 | 8 | 0.231 |
9 | 0.5 | 0.06 | 8 | 0.165 |
10 | 0.5 | 0.08 | 10 | 0.179 |
11 | 0.5 | 0.10 | 3 | 0.259 |
12 | 0.5 | 0.12 | 5 | 0.262 |
13 | 0.3 | 0.06 | 10 | 0.130 |
14 | 0.3 | 0.08 | 8 | 0.163 |
15 | 0.3 | 0.10 | 5 | 0.207 |
16 | 0.3 | 0.12 | 3 | 0.250 |
K1j | 0.876 | 0.702 | 0.951 | |
K2j | 0.872 | 0.745 | 0.837 | |
K3j | 0.865 | 0.925 | 0.790 | |
K4j | 0.750 | 0.991 | 0.785 | |
k1j | 0.219 | 0.176 | 0.238 | |
k2j | 0.218 | 0.186 | 0.209 | |
k3j | 0.216 | 0.231 | 0.198 | |
k4j | 0.188 | 0.248 | 0.196 | |
R | 0.031 | 0.072 | 0.042 |
SBET/(m2/g) | St-plot/ (m2/g) | Vtotal/ (cm3/g) | Vmicro /(cm3/g) | Vmeso/(cm3/g) |
---|---|---|---|---|
14.98 | 10.22 | 0.02 | 0 | 0.02 |
Table 3 Pore structure parameters of prepared coal tar pitch based carbon aerogel microspheres
SBET/(m2/g) | St-plot/ (m2/g) | Vtotal/ (cm3/g) | Vmicro /(cm3/g) | Vmeso/(cm3/g) |
---|---|---|---|---|
14.98 | 10.22 | 0.02 | 0 | 0.02 |
Fig.6 N2 isothermal adsorption and desorption curves and pore size distribution of carbon aerogels microspheres prepared at different activation temperatures
Sample | SBET/ (m2/g) | St-plot/ (m2/g) | Vtotal/ (cm3/g) | Vmicro/ (cm3/g) | Vmeso/ (cm3/g) |
---|---|---|---|---|---|
850-2h | 901 | 886 | 0.34 | 0.33 | 0.01 |
900-2h | 1532 | 1412 | 0.61 | 0.54 | 0.07 |
950-2h | 2852 | 2581 | 1.37 | 1.09 | 0.28 |
Table 4 Pore structure parameters of carbon aerogels microspheres at different activation temperatures
Sample | SBET/ (m2/g) | St-plot/ (m2/g) | Vtotal/ (cm3/g) | Vmicro/ (cm3/g) | Vmeso/ (cm3/g) |
---|---|---|---|---|---|
850-2h | 901 | 886 | 0.34 | 0.33 | 0.01 |
900-2h | 1532 | 1412 | 0.61 | 0.54 | 0.07 |
950-2h | 2852 | 2581 | 1.37 | 1.09 | 0.28 |
Sample | SBET/ (m2/g) | St-plot/ (m2/g) | Vtotal/ (cm3/g) | Vmicro/ (cm3/g) | Vmeso/ (cm3/g) |
---|---|---|---|---|---|
900-1h | 1051 | 988 | 0.42 | 0.37 | 0.05 |
900-2h | 1532 | 1412 | 0.61 | 0.54 | 0.07 |
900-4h | 2540 | 1950 | 1.11 | 0.78 | 0.33 |
Table 5 Pore structure parameters of carbon aerogels microspheres with different activation time
Sample | SBET/ (m2/g) | St-plot/ (m2/g) | Vtotal/ (cm3/g) | Vmicro/ (cm3/g) | Vmeso/ (cm3/g) |
---|---|---|---|---|---|
900-1h | 1051 | 988 | 0.42 | 0.37 | 0.05 |
900-2h | 1532 | 1412 | 0.61 | 0.54 | 0.07 |
900-4h | 2540 | 1950 | 1.11 | 0.78 | 0.33 |
1 | 李昭昭, 张琬瑶, 员双刚, 等. 煤沥青基高性能碳材料的研究进展[J]. 广东化工, 2021, 48(8): 133-134. |
Li Z Z, Zhang W Y, Yuan S G, et al. Research progress of high performance carbon materials from coal tar pitch[J]. Guangdong Chemical Industry, 2021, 48(8): 133-134. | |
2 | Zang X N, Dong Y, Jian C Y, et al. Upgrading carbonaceous materials: coal, tar, pitch, and beyond[J]. Matter, 2022, 5(2): 430-447. |
3 | 王叙春, 李金泽, 李广勇, 等. 气凝胶微球的制备及应用[J]. 物理化学学报, 2017, 33(11): 2141-2152. |
Wang X C, Li J Z, Li G Y, et al. Fabrication and performance of various aerogel microspheres[J]. Acta Physico-Chimica Sinica, 2017, 33(11): 2141-2152. | |
4 | Stoycheva I, Tsyntsarski B, Vasileva M, et al. New method for synthesis of carbon foam on the base of mixture of coal tar pitch and furfural without using pressure and stabilization treatment[J]. Diamond and Related Materials, 2020, 109: 108066. |
5 | 王凯, 高超, 李松恩, 等. 煤质沥青基超级活性炭的提质处理及其电化学性能的研究[J]. 新型炭材料, 2018, 33(6): 562-570. |
Wang K, Gao C, Li S E, et al. Electrochemical performance of high surface area activated carbons derived from coal tar pitch[J]. New Carbon Materials, 2018, 33(6): 562-570. | |
6 | Banerjee C, Chandaliya V K, Dash P S, et al. Effect of different parameters on porosity and compressive strength of coal tar pitch derived carbon foam[J]. Diamond and Related Materials, 2019, 95: 83-90. |
7 | Banerjee C, Chandaliya V K, Dash P S. Recent advancement in coal tar pitch-based carbon fiber precursor development and fiber manufacturing process[J]. Journal of Analytical and Applied Pyrolysis, 2021, 158: 105272. |
8 | Wang Z M, Xu Z W, Guan Y F, et al. Preparation of pitch-based activated carbon fibers with high specific surface area and excellent adsorption properties[J].Research on Chemical Intermediates, 2022, 48(4): 1733-1746. |
9 | Zhang Z C, Wang Z H, Zhang L J, et al. Study on the co-carbonization behavior of high-temperature coal tar pitch and raffinate oil of low-temperature coal tar[J]. Fuel, 2021, 310(3): 122469. |
10 | Lee J H, Park S J. Recent advances in preparations and applications of carbon aerogels: a review[J]. Carbon, 2020, 163: 1-18. |
11 | Sun S J, Yan Q H, Wu M F, et al. Carbon aerogel based materials for secondary batteries[J]. Sustainable Materials and Technologies, 2021, 30: e00342. |
12 | Leila K, Reza G M, Don M J, et al. A comprehensive review on the application of aerogels in CO2-adsorption: materials and characterisation[J]. Chemical Engineering Journal, 2021, 412: 128604. |
13 | Pekala R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde[J]. Journal of Materials Science, 1989, 24(9): 3221-3227. |
14 | Long D H, Zhang J, Yang J H, et al. Chemical state of nitrogen in carbon aerogels issued from phenol-melamine-formaldehyde gels[J]. Carbon, 2008, 46(9): 1259-1262. |
15 | Guo J, Wu D L, Wang T, et al. P-doped hierarchical porous carbon aerogels derived from phenolic resins for high performance supercapacitor[J]. Applied Surface Science, 2019, 475: 56-66. |
16 | Hu H, Zhao Z B, Wan W B, et al. Ultralight and highly compressible graphene aerogels[J]. Advanced Materials (Deerfield Beach, Fla.), 2013, 25(15): 2219-2223. |
17 | Wang P, Liu H L, Yuan W J, et al. Carbon nanotubes regulated hollow skeleton carbon aerogel for effective thermal insulation and favorable mechanical behavior[J]. Journal of Sol-Gel Science and Technology, 2022, 101(1): 193-204. |
18 | Chen H, Liu D, Shen Z H, et al. Functional biomass carbons with hierarchical porous structure for supercapacitor electrode materials[J]. Electrochimica Acta, 2015, 180: 241-251. |
19 | Zhang C Y, Lin S, Peng J J, et al. Preparation of highly porous carbon through activation of NH4Cl induced hydrothermal microsphere derivation of glucose[J]. RSC Advances, 2017, 7(11): 6486-6491. |
20 | Wu C W, Li P H, Wei Y M, et al. Review on the preparation and application of lignin-based carbon aerogels[J]. RSC Advances, 2022, 12(17): 10755-10765. |
21 | Sen S, Singh A, Bera C, et al. Recent developments in biomass derived cellulose aerogel materials for thermal insulation application: a review[J]. Cellulose, 2022, 29(9): 4805-4833. |
22 | Pan C, Kazuki M, Wang C Y, et al. Frame-filling structural nanoporous carbon from amphiphilic carbonaceous mixture comprising graphite oxide[J]. Carbon, 2016, 108: 225-233. |
23 | Zeng X H, Wu D C, Fu R W, et al. Preparation and electrochemical properties of pitch-based activated carbon aerogels[J]. Electrochimica Acta, 2008, 53(18): 5711-5715. |
24 | García-González C A, Camino-Rey M C, Alnaief M, et al. Supercritical drying of aerogels using CO2: effect of extraction time on the end material textural properties[J]. The Journal of Supercritical Fluids, 2012, 66: 297-306. |
25 | Vazhayal L, Talasila S, Abdul Azeez P M, et al. Mesochanneled hierarchically porous aluminosiloxane aerogel microspheres as a stable support for pH-responsive controlled drug release[J]. ACS Applied Materials & Interfaces, 2014, 6(17): 15564-15574. |
26 | Liao S C, Zhai T L, Xia H S. Highly adsorptive graphene aerogel microspheres with center-diverging microchannel structures[J]. Journal of Materials Chemistry A, 2016, 4(3): 1068-1077. |
27 | Zuo P P, Qu S J, Shen W Z. Asphaltenes: separations, structural analysis and applications[J]. Journal of Energy Chemistry, 2019, 34(7): 186-207. |
28 | 姚立红, 苏长安, 齐立权, 等. α-呋喃酯的结构与红外光谱特征[J]. 光谱学与光谱分析, 1999, 19(1): 32-34. |
Yao L H, Su C G, Qi L Q, et al. The substituent structures and characteristic infrared spectra of α furan esters[J]. Spectroscopy and Spectral Analysis, 1999, 19(1): 32-34. | |
29 | 贾廷见, 李朋伟, 尚治国, 等. 糠醛分子的拉曼光谱与红外光谱研究[J]. 光散射学报, 2007, 19(1): 1-5. |
Jia T J, Li P W, Shang Z G, et al. The study on Raman and infrared spectra of furfural molecule[J]. The Journal of Light Scattering, 2007, 19(1): 1-5. | |
30 | Wang Z, Yu C H. Preparation and growth characteristics of mesocarbon microbeads[J]. Advanced Materials Research, 2013, 750/751/752: 1121-1124. |
31 | Rashidi N A, Yusup S. Production of palm kernel shell-based activated carbon by direct physical activation for carbon dioxide adsorption[J]. Environmental Science and Pollution Research, 2019, 26(33): 33732-33746. |
32 | Zhang G L, Ke Y C, Qin M R, et al. Preparations and tribological properties of COPNA copolymer materials[J]. Procedia Engineering, 2015, 102: 615-624. |
33 | Wu M B, Shi Y Y, Li S B, et al. Synthesis and characterization of condensed polynuclear aromatic resin derived from ethylene tar[J]. China Petroleum Processing & Petrochemical Technology, 2012, 14(4): 42-47. |
34 | Zhang X W, Meng Y C, Fan B L, et al. Preparation of mesophase pitch from refined coal tar pitch using naphthalene-based mesophase pitch as nucleating agent[J]. Fuel, 2019, 243: 390-397. |
35 | Li L, lin X C, He J, et al. Preparation of mesocarbon microbeads from coal tar pitch with blending of biomass tar pitch[J]. Journal of Analytical and Applied Pyrolysis, 2021, 155: 105039. |
[1] | Nan ZHOU, Zan WANG, Yingjuan SHAO, Wenqi ZHONG. Experimental study on attrition characteristics of coal tar pitch particles during gas-solid fluidization [J]. CIESC Journal, 2022, 73(2): 587-594. |
[2] | ZHOU Shijie, REN Zhen, YANG Yusen, WEI Min. Preparation and application of metal oxides with various morphology for industrial catalysis [J]. CIESC Journal, 2021, 72(6): 2972-3001. |
[3] | SUN Jingjing, JIA Lina, LIN Bo, WANG Yan, GONG Junbo. Research advances of drug-drug co-crystals [J]. CIESC Journal, 2021, 72(2): 828-840. |
[4] | TIAN Yeshun,REN Wen,WANG Guoxiu,SUN Shuang,ZHOU Ping,WANG Wenlong,SONG Zhanlong,ZHAO Xiqiang. Study on preparation and desulfurization characteristics of biomass activated carbon by microwave heating CO2 activation method [J]. CIESC Journal, 2020, 71(12): 5774-5784. |
[5] | Zhuoheng TU,Mingzhen SHI,Xiaomin ZHANG,Youting WU,Xingbang HU. Research on crosslinking of epichlorohydrin and ionic liquids [J]. CIESC Journal, 2020, 71(11): 4971-4980. |
[6] | Shufen ZHANG. Current status and development trend of China’s dyestuff industry [J]. CIESC Journal, 2019, 70(10): 3704-3711. |
[7] | LI Lixin, ZHANG Si, WANG Dong, MA Fang. Recent progress on mycelial pellet [J]. CIESC Journal, 2018, 69(6): 2364-2372. |
[8] | LIU Zhiying, FAN Hong. Preparation of functional ethoxysilane-containing polyethylene through ethylene coordination copolymerization catalyzed by iminopyrrolide vanadium complex [J]. CIESC Journal, 2017, 68(2): 774-780. |
[9] | HE Linjiao, LIU Xiaojing, HUANG Jinsha, ZHUANG Wei, YING Hanjie. Fortified continous catalytic properties of immobilized nuclease P1 with surface activated HA amino resin [J]. CIESC Journal, 2016, 67(9): 3850-3860. |
[10] | DING Chunsheng, ZHANG Mengqing, ZOU Bangwen, LI Naijun. Mechanism of chlorination of threonine disinfection by-product trichloroacetone in drinking water [J]. CIESC Journal, 2016, 67(7): 3010-3015. |
[11] | HUANG Jiankun, LIU Hui'e, HUANG Yangfan, MA Yanbing, DING Chuanqin. Facile synthesis of graphene aerogels as high-performance adsorbents for diesel removal [J]. CIESC Journal, 2016, 67(12): 5048-5056. |
[12] | WENG Sen, LI Xiao, ZHANG Weiying, JIANG Xiancai, YING Xiaoguang. Effect of crosslinking structure on properties of absorbent resins for benzene series [J]. CIESC Journal, 2015, 66(2): 814-819. |
[13] | ZHANG Jingjing, HUANG Hanxiong, HUANG Gengqun. Effects of crosslinking agent on rheological properties of poly(lactic acid) and cellular structure of its microcellular foams [J]. CIESC Journal, 2015, 66(10): 4252-4257. |
[14] | SUN Yu,LIAO Zhiyuan,SU Long,ZENG Peng. Solvent effect on removal of benzo[a]pyrene in coal tar pitch [J]. Chemical Industry and Engineering Progree, 2014, 33(08): 2211-2214. |
[15] | JIANG Yueping1,2,LI Ruyan1,2,SUN Kewei2,LIU Xuan2. Preparation and characterization of citric acid cross-linked cellulose gel material [J]. Chemical Industry and Engineering Progree, 2014, 33(07): 1796-1802. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||