CIESC Journal ›› 2020, Vol. 71 ›› Issue (11): 4971-4980.DOI: 10.11949/0438-1157.20200804
• Celebration Column for School of Chemistry and Chemical Engineering, Nanjing University • Previous Articles Next Articles
Zhuoheng TU(),Mingzhen SHI,Xiaomin ZHANG,Youting WU(),Xingbang HU
Received:
2020-06-22
Revised:
2020-09-15
Online:
2020-11-05
Published:
2020-11-05
Contact:
Youting WU
通讯作者:
吴有庭
作者简介:
涂卓恒(1994—),男,博士研究生,基金资助:
CLC Number:
Zhuoheng TU,Mingzhen SHI,Xiaomin ZHANG,Youting WU,Xingbang HU. Research on crosslinking of epichlorohydrin and ionic liquids[J]. CIESC Journal, 2020, 71(11): 4971-4980.
涂卓恒,史名珍,张效敏,吴有庭,胡兴邦. 环氧氯丙烷与离子液体的交联过程研究[J]. 化工学报, 2020, 71(11): 4971-4980.
Add to citation manager EndNote|Ris|BibTeX
Fig.3 Plots of pH (a) and conversion of chloride group (b) in the equimolar reaction system of ECH with [DMAPAH][MOAc] as a function of time at different temperatures
Fig.4 Plots of pH (a), conversion of chloride group (b) and conversion of epoxy group (c) in the reaction systems with different ECH-to-DMAPA molar ratio as a function of time at 25℃
Fig.5 Plots of pH (a), conversion of chloride group (b) and conversion of epoxy group (c) in the equimolar reaction systems of ECH with DMAPA as a function of time at different temperatures
Fig.6 Plots of viscosities(a), logarithms of viscosity (b) in reaction systems with 1.0 of ECH-to-DMAPA molar ratio as a function of time at different temperatures
Fig.10 Plots of permeability of CO2 and CO2/N2 selectivity in ECH0.5-[DMAPAH][MOAc] of 20%(mass) water as a function of transmembrane pressure difference under humidified condition at 40℃
1 | Chestnut D H. Ten years of experience with accidental dural puncture and post-dural puncture headache in a tertiary obstetric anaesthesia department[J]. Yearbook of Anesthesiology and Pain Management, 2009, 2009: 252-253. |
2 | Ramdin M, de Loos T W, Vlugt T J H. State-of-the-art of CO2 capture with ionic liquids[J]. Industrial & Engineering Chemistry Research, 2012, 51(24): 8149-8177. |
3 | Liu A H, Ma R, Song C, et al. Equimolar CO2 capture by N-substituted amino acid salts and subsequent conversion[J]. Angewandte Chemie International Edition, 2012, 51(45): 11306-11310. |
4 | Rochelle G T. Amine scrubbing for CO2 capture [J]. Science, 2009, 325(5948): 1652-1654. |
5 | Bernardo P, Drioli E, Golemme G. Membrane gas separation: a review/state of the art [J]. Industrial & Engineering Chemistry Research, 2009, 48(10): 4638-4663. |
6 | D􀆳Alessandro D M, Smit B, Long J R. Carbon dioxide capture: prospects for new materials [J]. Angewandte Chemie International Edition,2010, 49(35): 6058-6082. |
7 | Blanchard L A, Hancu D, Beckman E J, et al. Green processing using ionic liquids and CO2[J]. Nature, 1999, 399(6731): 28-29. |
8 | Aki S N V K, Mellein B R, Saurer E M, et al. High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids [J]. Journal of Physical Chemistry B, 2004, 108(52): 20355-20365. |
9 | Bates E D, Mayton R D, Ntai I, et al. CO2 capture by a task-specific ionic liquid [J]. Journal of the American Chemical Society, 2002, 124(6): 926-927. |
10 | Xue Z, Zhang Z, Han J, et al. Carbon dioxide capture by a dual amino ionic liquid with amino-functionalized imidazolium cation and taurine anion [J]. International Journal of Greenhouse Gas Control, 2011, 5(4): 628-633. |
11 | Luo X Y, Fan X, Shi G L, et al. Decreasing the viscosity in CO2 capture by amino-functionalized ionic liquids through the formation of intramolecular hydrogen bond [J]. Journal of Physical Chemistry B, 2016, 120(10): 2807-2813. |
12 | Hu X B, Li Y X, Huang K, et al. Impact of α-d-glucose pentaacetate on the selective separation of CO2 and SO2 in supported ionic liquid membranes [J]. Green Chemistry, 2012, 14(5): 1440-1446. |
13 | Huang K, Lu J F, Wu Y T, et al. Absorption of SO2 in aqueous solutions of mixed hydroxylammonium dicarboxylate ionic liquids [J]. Chemical Engineering Journal, 2013, 215/216: 36-44. |
14 | Huang K, Chen Y L, Zhang X M, et al. Experimental study and thermodynamical modelling of the solubilities of SO2, H2S and CO2 in N-dodecylimidazole and 1,1'-[oxybis(2,1-ethanediyloxy-2,1-ethanediyl)]bis(imidazole): an evaluation of their potential application in the separation of acidic gases [J]. Fluid Phase Equilibria, 2014, 378: 21-33. |
15 | Huang K, Xia S, Zhang X M, et al. Comparative study of the solubilities of SO2 in five low volatile organic solvents (sulfolane, ethylene glycol, propylene carbonate, N-methylimidazole, and N-methylpyrrolidone) [J]. Journal of Chemical & Engineering Data, 2014, 59(4): 1202-1212. |
16 | Zhao T X, Liang J, Zhang Y Y, et al. Unexpectedly efficient SO2 capture and conversion to sulfur in novel imidazole-based deep eutectic solvents [J]. Chemical Communication, 2018, 54(65): 8964-8967. |
17 | Huang K, Cai D N, Chen Y L, et al. Thermodynamic validation of 1-alkyl-3-methylimidazolium carboxylates as task-specific ionic liquids for H2S absorption [J]. AIChE Journal, 2013, 59(6): 2227-2235. |
18 | Zhang X M, Tu Z H, Li H, et al. Selective separation of H2S and CO2 from CH4 by supported ionic liquid membranes [J]. Journal of Membrane Science, 2017, 543: 282-287. |
19 | Zheng W T, Wu D S, Feng X, et al. Low viscous protic ionic liquids functionalized with multiple Lewis base for highly efficient capture of H2S [J]. Journal of Molecular Liquids, 2018, 263: 209-217. |
20 | Tao D J, Chen F F, Tian Z Q, et al. Highly efficient carbon monoxide capture by carbanion-functionalized ionic liquids through C-site interactions [J]. Angewandte Chemie International Edition, 2017, 56(24): 6843-6847. |
21 | Liu Y M, Tian Z, Qu F, et al. Tuning ion-pair interaction in cuprous-based protic ionic liquids for significantly improved CO capture [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(13): 11894-11900. |
22 | Tu Z H, Zhang Y Y, Wu Y T, et al. Self-enhancement of CO reversible absorption accompanied by phase transition in protic chlorocuprate ionic liquids for effective CO separation from N2 [J]. Chemical Communication, 2019, 55(23): 3390-3393. |
23 | Jiang Y Y, Zhou Z, Jiao Z, et al. SO2 gas separation using supported ionic liquid membranes [J]. Journal of Physical Chemistry B, 2007, 111(19): 5058-5061. |
24 | Bara J E, Gabriel C J, Carlisle T K, et al. Gas separations in fluoroalkyl-functionalized room-temperature ionic liquids using supported liquid membranes [J]. Chemical Engineering Journal, 2009, 147(1): 43-50. |
25 | Scovazzo P. Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research [J]. Journal of Membrane Science, 2009, 343(1/2): 199-211. |
26 | Hanioka S, Maruyama T, Sotani T, et al. CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane [J]. Journal of Membrane Science, 2008, 314(1/2): 1-4. |
27 | Zhang X M, Tu Z H, Li H, et al. Supported protic-ionic-liquid membranes with facilitated transport mechanism for the selective separation of CO2 [J]. Journal of Membrane Science, 2017, 527: 60-67. |
28 | Kasahara S, Kamio E, Ishigami T, et al. Amino acid ionic liquid-based facilitated transport membranes for CO2 separation [J]. Chemical Communication, 2012, 48(55): 6903-6905. |
29 | Zhang X M, Xiong W J, Tu Z H, et al. Supported ionic liquid membranes with dual-site interaction mechanism for efficient separation of CO2 [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10792-10799. |
30 | Huang K, Zhang X M, Li Y X, et al. Facilitated separation of CO2 and SO2 through supported liquid membranes using carboxylate-based ionic liquids [J]. Journal of Membrane Science, 2014, 471: 227-236. |
31 | Zeng S J, Zhang X P, Bai L, et al. Ionic-liquid-based CO2 capture systems: structure, interaction and process [J]. Chemical Reviews, 2017, 117(14): 9625-9673. |
32 | Bara J E, Lessmann S, Gabriel C J, et al. Synthesis and performance of polymerizable room-temperature ionic liquids as gas separation membranes [J]. Industrial & Engineering Chemistry Research, 2007, 46(16): 5397-5404. |
33 | Carlisle T K, Wiesenauer E F, Nicodemus G D, et al. Ideal CO2/light gas separation performance of poly(vinylimidazolium) membranes and poly(vinylimidazolium)-ionic liquid composite films [J]. Industrial & Engineering Chemistry Research, 2012, 52(3): 1023-1032. |
34 | Li P, Coleman M R. Synthesis of room temperature ionic liquids based random copolyimides for gas separation applications [J]. European Polymer Journal, 2013, 49(2): 482-491. |
35 | Chen H Z, Li P, Chung T-S. PVDF/ionic liquid polymer blends with superior separation performance for removing CO2 from hydrogen and flue gas [J]. International Journal of Hydrogen Energy, 2012, 37(16): 11796-11804. |
36 | Voss B A, Bara J E, Gin D L, et al. Physically gelled ionic liquids: solid membrane materials with liquidlike CO2 gas transport [J]. Chemistry of Materials, 2009, 21(14): 3027-3029. |
37 | Nguyen P T, Voss B A, Wiesenauer E F, et al. Physically gelled room-temperature ionic liquid-based composite membranes for CO2/N2 separation: effect of composition and thickness on membrane properties and performance [J]. Industrial & Engineering Chemistry Research, 2012, 52(26): 8812-8821. |
38 | Zhang X M, Kar M, Mendes T C, et al. Supported ionic liquid gel membrane electrolytes for flexible supercapacitors [J]. Advanced Energy Materials, 2018, 8(15): 1702702. |
39 | McDanel W M, Cowan M G, Chisholm N O, et al. Fixed-site-carrier facilitated transport of carbon dioxide through ionic-liquid-based epoxy-amine ion gel membranes [J]. Journal of Membrane Science, 2015, 492: 303-311. |
40 | Dai Z, Ansaloni L, Gin D L, et al. Facile fabrication of CO2 separation membranes by cross-linking of poly(ethylene glycol) diglycidyl ether with a diamine and a polyamine-based ionic liquid [J]. Journal of Membrane Science, 2017, 523: 551-560. |
[1] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[2] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[3] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[4] | Yanpeng WU, Xiaoyu LI, Qiaoyang ZHONG. Experimental analysis on filtration performance of electrospun nanofibers with amphiphobic membrane of oily fine particles [J]. CIESC Journal, 2023, 74(S1): 259-264. |
[5] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[6] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[7] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[8] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[9] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[10] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[11] | Junfeng LU, Huaiyu SUN, Yanlei WANG, Hongyan HE. Molecular understanding of interfacial polarization and its effect on ionic liquid hydrogen bonds [J]. CIESC Journal, 2023, 74(9): 3665-3680. |
[12] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[13] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[14] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[15] | Meisi CHEN, Weida CHEN, Xinyao LI, Shangyu LI, Youting WU, Feng ZHANG, Zhibing ZHANG. Advances in silicon-based ionic liquid microparticle enhanced gas capture and conversion [J]. CIESC Journal, 2023, 74(9): 3628-3639. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||