CIESC Journal ›› 2022, Vol. 73 ›› Issue (12): 5355-5366.DOI: 10.11949/0438-1157.20221147
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yongshuai LI1(), Yi ZHENG1, Lan LI1, Xinshuang LI1, Xinyi ZHAO1, Hui PAN1,2(), Hao LING1()
Received:
2022-08-16
Revised:
2022-12-08
Online:
2023-01-17
Published:
2022-12-05
Contact:
Hui PAN, Hao LING
李永帅1(), 郑毅1, 李岚1, 李新爽1, 赵馨怡1, 潘慧1,2(), 凌昊1()
通讯作者:
潘慧,凌昊
作者简介:
李永帅(1998—),男,硕士研究生,liyongshuai801@163.com
基金资助:
CLC Number:
Yongshuai LI, Yi ZHENG, Lan LI, Xinshuang LI, Xinyi ZHAO, Hui PAN, Hao LING. Influence of lift model on gas-liquid-solid flow field in polyethylene fluidized bed reactor[J]. CIESC Journal, 2022, 73(12): 5355-5366.
李永帅, 郑毅, 李岚, 李新爽, 赵馨怡, 潘慧, 凌昊. 聚乙烯流化床反应器气-液-固流场中升力模型的影响研究[J]. 化工学报, 2022, 73(12): 5355-5366.
Add to citation manager EndNote|Ris|BibTeX
参数设置 | 数值 |
---|---|
气相 | |
cp,g/(J·kg-1·K-1) | 1780 |
ρg/(kg·m-3) | 26.7 |
μg/(kg·m-1·s-1) | 1.4×10-5 |
kg/(W·m-1·K-1) | 3.18 ×10-2 |
扩散系数/(m2·s-1) | 4×10-7 |
液相 | |
直径/m | 8×10-5 m |
ρl /(kg·m-3) | 541 |
cp,l /(J·kg-1·K-1) | 2400 |
固相 | |
直径/m | 1×10-4、5×10-4、1×10-3 |
ρs/(kg·m-3) | 919 |
cp,s/(J·kg-1·K-1) | 2550 |
入口颗粒温度/K | 328 |
入口气相温度/K | 328 |
入口液相温度/K | 328 |
入口气相速度/(m·s-1) | 0.5928 |
入口液相速度/(m·s-1) | 0.5928 |
入口液相质量分数 | 0.1243% |
初始固相体积分数 | 0.5 |
初始床层高度/m | 3.5 |
压力/MPa | 2 |
动力学参数 | |
EA/(J·mol-1) | 50400 |
ED/(J·mol-1) | 1000 |
ΔH/(J·kg-1) | 3.843×106 |
ΔHvap/(J·kg-1) | 2.84×105 |
ρcat/(g·m-3) | 2.84×106 |
kp0/(m3·mol-1·s-1) | 4.49×106 |
kd0/(m3·mol-1·s-1) | 1.6×10-4 |
Table 1 Physical properties of three phases and operation conditions from industrial data
参数设置 | 数值 |
---|---|
气相 | |
cp,g/(J·kg-1·K-1) | 1780 |
ρg/(kg·m-3) | 26.7 |
μg/(kg·m-1·s-1) | 1.4×10-5 |
kg/(W·m-1·K-1) | 3.18 ×10-2 |
扩散系数/(m2·s-1) | 4×10-7 |
液相 | |
直径/m | 8×10-5 m |
ρl /(kg·m-3) | 541 |
cp,l /(J·kg-1·K-1) | 2400 |
固相 | |
直径/m | 1×10-4、5×10-4、1×10-3 |
ρs/(kg·m-3) | 919 |
cp,s/(J·kg-1·K-1) | 2550 |
入口颗粒温度/K | 328 |
入口气相温度/K | 328 |
入口液相温度/K | 328 |
入口气相速度/(m·s-1) | 0.5928 |
入口液相速度/(m·s-1) | 0.5928 |
入口液相质量分数 | 0.1243% |
初始固相体积分数 | 0.5 |
初始床层高度/m | 3.5 |
压力/MPa | 2 |
动力学参数 | |
EA/(J·mol-1) | 50400 |
ED/(J·mol-1) | 1000 |
ΔH/(J·kg-1) | 3.843×106 |
ΔHvap/(J·kg-1) | 2.84×105 |
ρcat/(g·m-3) | 2.84×106 |
kp0/(m3·mol-1·s-1) | 4.49×106 |
kd0/(m3·mol-1·s-1) | 1.6×10-4 |
参数 | 数值 |
---|---|
入口边界条件 | 速度入口 |
出口边界条件 | 压力出口 |
壁面边界条件 | 气液相壁面无滑移,固相部分滑移 |
壁面热条件 | Adiabatic |
颗粒碰撞恢复系数 | 0.9 |
颗粒黏度 | 文献[ |
颗粒体积黏度 | 文献[ |
摩擦黏度 | 文献[ |
内摩擦角 | 30° |
固相填料极限 | 0.63 |
最大迭代次数 | 50 |
收敛标准 | 10-5 |
时间步长 (s) | 10-3 |
Table 2 Numerical parameters
参数 | 数值 |
---|---|
入口边界条件 | 速度入口 |
出口边界条件 | 压力出口 |
壁面边界条件 | 气液相壁面无滑移,固相部分滑移 |
壁面热条件 | Adiabatic |
颗粒碰撞恢复系数 | 0.9 |
颗粒黏度 | 文献[ |
颗粒体积黏度 | 文献[ |
摩擦黏度 | 文献[ |
内摩擦角 | 30° |
固相填料极限 | 0.63 |
最大迭代次数 | 50 |
收敛标准 | 10-5 |
时间步长 (s) | 10-3 |
1 | 夏勇, 黄昌猛, 吕海霞, 等. 聚乙烯的结构、性能与应用[J]. 橡塑技术与装备, 2017, 43(16): 42-45. |
Xia Y, Huang C M, Lyu H X, et al. Structure, properties and applications of polyethylene[J]. China Rubber/Plastics Technology and Equipment, 2017, 43(16): 42-45. | |
2 | Soares J B P, McKenna T F. Polyolefin Reaction Engineering[M]. Weinheim: Wiley-VCH, 2012. |
3 | 孙海涛. 气相流化床法聚乙烯工艺技术比较[J]. 石化技术, 2019, 26(2): 133. |
Sun H T. Comparison of polyethylene process technologies by gas-phase fluidized bed process[J]. Petrochemical Industry Technology, 2019, 26(2): 133. | |
4 | Yang Y, Yang J, Chen W, et al. Instability analysis of the fluidized bed for ethylene polymerization with condensed mode operation[J]. Industrial & Engineering Chemistry Research, 2002, 41(10): 2579-2584. |
5 | Pan H, Liang X F, Luo Z H. CFD modeling of the gas-solid two-fluid flow in polyethylene FBRs: from traditional operation to super-condensed mode[J]. Advanced Powder Technology, 2016, 27(4): 1494-1505. |
6 | Zhou Y F, Wang J D, Yang Y R, et al. Modeling of the temperature profile in an ethylene polymerization fluidized-bed reactor in condensed-mode operation[J]. Industrial & Engineering Chemistry Research, 2013, 52(12): 4455-4464. |
7 | Zhou Y F, Shi Q, Huang Z L, et al. Effects of liquid action mechanisms on hydrodynamics in liquid-containing gas-solid fluidized bed reactor[J]. Chemical Engineering Journal, 2016, 285: 121-127. |
8 | Zhou Y F, Shi Q, Huang Z L, et al. Realization and control of multiple temperature zones in liquid-containing gas-solid fluidized bed reactor[J]. AIChE Journal, 2016, 62(5): 1454-1466. |
9 | Zhou Y F, Shi Q, Huang Z L, et al. Effects of interparticle forces on fluidization characteristics in liquid-containing and high-temperature fluidized beds[J]. Industrial & Engineering Chemistry Research, 2013, 52(47): 16666-16674. |
10 | 范小强, 韩国栋, 黄正梁, 等. 气相法聚乙烯工艺冷凝态操作模式的稳定性和动态行为[J]. 化工学报, 2018, 69(2): 779-791. |
Fan X Q, Han G D, Huang Z L, et al. Stability and dynamic behaviors of gas-phase ethylene polymerization process under condensed mode operation[J]. CIESC Journal, 2018, 69(2): 779-791. | |
11 | Pan H, Liang X F, Zhu L T, et al. Important analysis of liquid vaporization modeling scheme in computational fluid dynamics modeling of gas-liquid-solid polyethylene fluidized bed reactors[J]. Industrial & Engineering Chemistry Research, 2017, 56(36): 10199-10213. |
12 | 张仪, 李兵, 白玉龙, 等. 液固流态化动态过程中相间作用力的数值模拟及实验验证[J]. 化工学报, 2020, 71(11): 5129-5139. |
Zhang Y, Li B, Bai Y L, et al. Numerical simulation and experimental validation of inter-phase forces in dynamic process of liquid-solid fluidization[J]. CIESC Journal, 2020, 71(11): 5129-5139. | |
13 | Pang M J, Wei J J. Analysis of drag and lift coefficient expressions of bubbly flow system for low to medium Reynolds number[J]. Nuclear Engineering and Design, 2011, 241(6): 2204-2213. |
14 | 毛在砂. 颗粒群研究: 多相流多尺度数值模拟的基础[J]. 过程工程学报, 2008, 8(4): 645-659. |
Mao Z S. Knowledge on particle swarm: the important basis for multi-scale numerical simulation of multiphase flows[J]. The Chinese Journal of Process Engineering, 2008, 8(4): 645-659. | |
15 | Wang Q G, Yao W. Computation and validation of the interphase force models for bubbly flow[J]. International Journal of Heat and Mass Transfer, 2016, 98: 799-813. |
16 | Yao Y, He Y J, Luo Z H, et al. 3D CFD-PBM modeling of the gas-solid flow field in a polydisperse polymerization FBR: the effect of drag model[J]. Advanced Powder Technology, 2014, 25(5): 1474-1482. |
17 | Hibiki T, Ishii H. Lift force in bubbly flow systems[J]. Chemical Engineering Science, 2007, 62(22): 6457-6474. |
18 | Zhang X B, Yan W C, Luo Z H. CFD-PBM simulation of bubble columns: sensitivity analysis of the nondrag forces[J]. Industrial & Engineering Chemistry Research, 2020, 59(41): 18674-18682. |
19 | Yamoah S, Raúl M C, Guillem M, et al. Numerical investigation of models for drag, lift, wall lubrication and turbulent dispersion forces for the simulation of gas-liquid two-phase flow[J]. Chemical Engineering Research and Design, 2015, 98: 17-35. |
20 | Koerich D M, Lopes G C, Rosa L M. Investigation of phases interactions and modification of drag models for liquid-solid fluidized bed tapered bioreactors[J]. Powder Technology, 2018, 339: 90-101. |
21 | Jin D, Xiong J B, Cheng X. Investigation on interphase force modeling for vertical and inclined upward adiabatic bubbly flow[J]. Nuclear Engineering and Design, 2019, 350: 43-57. |
22 | Zhang X, Yu T, Cong T L, et al. Effects of interaction models on upward subcooled boiling flow in annulus[J]. Progress in Nuclear Energy, 2018, 105: 61-75. |
23 | Schiller L. Uber Die grundlegenden berechnungen Bei der schwerkraftaufbereitung[J]. Z. Vereines Deutscher Inge., 1933, 77:318-321. |
24 | Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions[M]. New York: Academic Press, 1994. |
25 | Morsi S A, Alexander A J. An investigation of particle trajectories in two-phase flow systems[J]. Journal of Fluid Mechanics, 1972, 55(2): 193. |
26 | Gidaspow D, Bezburuah R, Ding J. Hydrodynamics of circulating fluidized beds: kinetic theory approach[R]. Chicago: Illinois Inst. of Tech., 1991. |
27 | Chapman S, Cowling T G. The Mathematical Theory of Non-uniform Gases: Notes Added in 1951[M]. New York: Cambridge University Press, 1953. |
28 | Lun C K K, Savage S B, Jeffrey D J, et al. Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flowfield[J]. Journal of Fluid Mechanics, 1984, 140: 223-256. |
29 | Boemer A, Qi H, Renz U. Eulerian simulation of bubble formation at a jet in a two-dimensional fluidized bed[J]. International Journal of Multiphase Flow, 1997, 23(5): 927-944. |
30 | Schaeffer D G. Instability in the evolution equations describing incompressible granular flow[J]. Journal of Differential Equations, 1987, 66(1): 19-50. |
31 | Saffman P G. The lift on a small sphere in a slow shear flow[J]. Journal of Fluid Mechanics, 1965, 22(2): 385-400. |
32 | Mei R W, Klausner J F. Shear lift force on spherical bubbles[J]. International Journal of Heat and Fluid Flow, 1994, 15(1): 62-65. |
33 | Legendre D, Magnaudet J. The lift force on a spherical bubble in a viscous linear shear flow[J]. Journal of Fluid Mechanics, 1998, 368: 81-126. |
34 | Moraga F J, Bonetto F J, Lahey R T. Lateral forces on spheres in turbulent uniform shear flow[J]. International Journal of Multiphase Flow, 1999, 25(6/7): 1321-1372. |
[1] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[2] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[3] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[4] | Linjing YUE, Yihan LIAO, Yuan XUE, Xuejie LI, Yuxing LI, Cuiwei LIU. Study on influence of pit defects on cavitation flow characteristics of throat of thick orifice plates [J]. CIESC Journal, 2023, 74(8): 3292-3308. |
[5] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[6] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[7] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[8] | Xiaokun HE, Rui LIU, Yuan XUE, Ran ZUO. Review of gas phase and surface reactions in AlN MOCVD [J]. CIESC Journal, 2023, 74(7): 2800-2813. |
[9] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[10] | Zhenghao YANG, Zhen HE, Yulong CHANG, Ziheng JIN, Xia JIANG. Research progress in downer fluidized bed reactor for biomass fast pyrolysis [J]. CIESC Journal, 2023, 74(6): 2249-2263. |
[11] | Zhihang ZHENG, Junnan MA, Zihan YAN, Chunxi LU. Study on the pressure pulsation characteristics in jet influence zone of riser [J]. CIESC Journal, 2023, 74(6): 2335-2350. |
[12] | Juhui CHEN, Qian ZHANG, Lingfeng SHU, Dan LI, Xin XU, Xiaogang LIU, Chenxi ZHAO, Xifeng CAO. Study on flow characteristics of nanoparticles in a rotating fluidized bed based on DEM method [J]. CIESC Journal, 2023, 74(6): 2374-2381. |
[13] | Yuan YU, Weiwei CHEN, Junjie FU, Jiaxiang LIU, Zhiwei JIAO. Study and prediction of flow field in the annular region of geometrically similar turbo air classifier [J]. CIESC Journal, 2023, 74(6): 2363-2373. |
[14] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[15] | Daoyin LIU, Bingqi CHEN, Zuyang ZHANG, Yan WU. Effect of agglomerate structure on drag force by numerical simulation [J]. CIESC Journal, 2023, 74(6): 2351-2362. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||