CIESC Journal ›› 2023, Vol. 74 ›› Issue (2): 642-652.DOI: 10.11949/0438-1157.20221368
• Thermodynamics • Previous Articles Next Articles
Wenting CHENG1(), Jie LI1, Li XU2, Fangqin CHENG1, Guoji LIU2
Received:
2022-10-17
Revised:
2022-12-08
Online:
2023-03-21
Published:
2023-02-05
Contact:
Wenting CHENG
通讯作者:
程文婷
作者简介:
程文婷(1983—),女,博士,副教授,wenting_cheng@outlook.com
基金资助:
CLC Number:
Wenting CHENG, Jie LI, Li XU, Fangqin CHENG, Guoji LIU. Experiment and prediction for the solubility of AlCl3·6H2O in FeCl3, CaCl2, KCl and KCl-FeCl3 solutions[J]. CIESC Journal, 2023, 74(2): 642-652.
程文婷, 李杰, 徐丽, 程芳琴, 刘国际. AlCl3·6H2O在FeCl3、CaCl2、KCl及KCl–FeCl3溶液中溶解度的实验及预测[J]. 化工学报, 2023, 74(2): 642-652.
Add to citation manager EndNote|Ris|BibTeX
组分 | (cm3·mol-1) | (J·K-1·mol-1) | (J·K-1·mol-1) | (kJ·mol-1) | (kJ·mol-1) |
---|---|---|---|---|---|
H+ | 0 | 0 | 0 | 0 | 0 |
OH- | -4.18 | -137.19 | -10.711 | -229.99 | -157.3 |
H2O | 18.1 | 75.3 | 69.95 | -285.83 | -237.19 |
Al3+ | 44.4 | -135.98 | -325.1 | -530.67 | -483.7 |
Fe3+ | 42.8 | -142.737 | -277.522 | -49.6023 | -17.2457 |
Ca2+ | 18.06 | -31.50 | -56.48 | -543.083 | -552.79 |
K+ | 9.06 | 8.28432 | 101.044 | -252.17 | -282.462 |
Cl– | 17.8 | -123.18 | 56.735 | -167.08 | -131.29 |
Table 1 Thermochemical data for the main species used by OLI-HKF to calculate equilibrium constants
组分 | (cm3·mol-1) | (J·K-1·mol-1) | (J·K-1·mol-1) | (kJ·mol-1) | (kJ·mol-1) |
---|---|---|---|---|---|
H+ | 0 | 0 | 0 | 0 | 0 |
OH- | -4.18 | -137.19 | -10.711 | -229.99 | -157.3 |
H2O | 18.1 | 75.3 | 69.95 | -285.83 | -237.19 |
Al3+ | 44.4 | -135.98 | -325.1 | -530.67 | -483.7 |
Fe3+ | 42.8 | -142.737 | -277.522 | -49.6023 | -17.2457 |
Ca2+ | 18.06 | -31.50 | -56.48 | -543.083 | -552.79 |
K+ | 9.06 | 8.28432 | 101.044 | -252.17 | -282.462 |
Cl– | 17.8 | -123.18 | 56.735 | -167.08 | -131.29 |
组分 | α1×10 | α2×10-2 | α3 | α4×10-4 | γ1 | γ2×10-4 | ω×10-5 |
---|---|---|---|---|---|---|---|
H+ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
OH- | 1.2527 | 0.0738 | 1.8423 | -2.782 | 4.15 | -10.35 | 1.724 |
Al3+ | -3.3404 | -17.1108 | 14.9917 | -2.0716 | 10.7 | -8.06 | 2.8711 |
Fe3+ | -3.1784 | -15.542 | 11.859 | -2.1365 | 11.08 | -9.9808 | 2.7025 |
Ca2+ | -0.1974 | 7.252 | 5.2966 | -2.4792 | 9 | -2.522 | 1.2366 |
K+ | 3.559 | -1.473 | 5.435 | -2.712 | 7.4 | -1.791 | 0.1927 |
Cl- | 4.032 | 4.801 | 5.563 | -2.847 | -4.40 | -5.714 | 1.456 |
Table 2 Values of seven HKF parameters for the main species
组分 | α1×10 | α2×10-2 | α3 | α4×10-4 | γ1 | γ2×10-4 | ω×10-5 |
---|---|---|---|---|---|---|---|
H+ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
OH- | 1.2527 | 0.0738 | 1.8423 | -2.782 | 4.15 | -10.35 | 1.724 |
Al3+ | -3.3404 | -17.1108 | 14.9917 | -2.0716 | 10.7 | -8.06 | 2.8711 |
Fe3+ | -3.1784 | -15.542 | 11.859 | -2.1365 | 11.08 | -9.9808 | 2.7025 |
Ca2+ | -0.1974 | 7.252 | 5.2966 | -2.4792 | 9 | -2.522 | 1.2366 |
K+ | 3.559 | -1.473 | 5.435 | -2.712 | 7.4 | -1.791 | 0.1927 |
Cl- | 4.032 | 4.801 | 5.563 | -2.847 | -4.40 | -5.714 | 1.456 |
A | B | C | D |
---|---|---|---|
-93.1444 | -7955.7916 | 16.7452 | -0.0419 |
Table 3 Coefficients for thermodynamic equilibrium constants of AlCl3·6H2O
A | B | C | D |
---|---|---|---|
-93.1444 | -7955.7916 | 16.7452 | -0.0419 |
温度/℃ | 用不同单位形式表示的溶解度(以AlCl3计) | ||
---|---|---|---|
25 | 386.124 | 2.8958 | 3.3622 |
35 | 385.658 | 2.8923 | 3.3754 |
45 | 385.598 | 2.8918 | 3.3896 |
50 | 386.728 | 2.9003 | 3.4100 |
55 | 386.437 | 2.8981 | 3.4112 |
65 | 387.280 | 2.9045 | 3.4287 |
70 | 388.439 | 2.9131 | 3.4453 |
75 | 388.881 | 2.9165 | 3.4514 |
85 | 390.593 | 2.9293 | 3.4682 |
Table 4 Solubility of AlCl3·6H2O (1) in H2O (2) (Equilibration time: 6 h)
温度/℃ | 用不同单位形式表示的溶解度(以AlCl3计) | ||
---|---|---|---|
25 | 386.124 | 2.8958 | 3.3622 |
35 | 385.658 | 2.8923 | 3.3754 |
45 | 385.598 | 2.8918 | 3.3896 |
50 | 386.728 | 2.9003 | 3.4100 |
55 | 386.437 | 2.8981 | 3.4112 |
65 | 387.280 | 2.9045 | 3.4287 |
70 | 388.439 | 2.9131 | 3.4453 |
75 | 388.881 | 2.9165 | 3.4514 |
85 | 390.593 | 2.9293 | 3.4682 |
溶液的浓度和密度 | 用不同单位形式表示的溶解度 (以AlCl3计) | ||||||
---|---|---|---|---|---|---|---|
M2/(mol·L-1) | M3/(mol·L-1) | m2/(mol·(kg H2O)-1) | m3/(mol·(kg H2O)-1) | ρs/(g·ml-1) | C1/(g·L-1) | M1/(mol·L-1) | m1/(mol·(kg H2O)-1) |
T=25℃ | |||||||
0.25 | 0 | 0.2923 | 0 | 1.2523 | 377.606 | 2.8319 | 3.3091 |
0.25 | 0.1 | 0.2921 | 0.1002 | 1.2626 | 374.724 | 2.8103 | 3.2856 |
0.25 | 0.2 | 0.2920 | 0.1940 | 1.2718 | 370.003 | 2.7749 | 3.2409 |
0.25 | 0.4 | 0.2916 | 0.3150 | 1.2837 | 363.840 | 2.7287 | 3.1823 |
0.25 | 0.5 | 0.2907 | 0.4265 | 1.2947 | 356.597 | 2.6743 | 3.1098 |
0.25 | 0.7 | 0.2906 | 0.5452 | 1.3062 | 349.680 | 2.6225 | 3.0435 |
0.25 | 0.8 | 0.2905 | 0.6707 | 1.3180 | 345.142 | 2.5884 | 3.0076 |
0.25 | 0.9 | 0.2899 | 0.7579 | 1.3263 | 338.541 | 2.5389 | 2.9418 |
0.25 | 1.0 | 0.2898 | 0.8715 | 1.3371 | 333.771 | 2.5032 | 2.9013 |
0.25 | 1.1 | 0.2897 | 0.9957 | 1.3486 | 328.333 | 2.4624 | 2.8553 |
0.25 | 1.2 | 0.2888 | 1.0793 | 1.3561 | 320.330 | 2.4024 | 2.7753 |
T=50℃ | |||||||
0.25 | 0 | 0.2968 | 0 | 1.2420 | 379.939 | 2.8494 | 3.3795 |
0.25 | 0.1 | 0.2965 | 0.1098 | 1.2521 | 375.231 | 2.8141 | 3.3375 |
0.25 | 0.2 | 0.2962 | 0.2080 | 1.2613 | 370.293 | 2.7771 | 3.2906 |
0.25 | 0.4 | 0.2956 | 0.3138 | 1.2712 | 363.734 | 2.7279 | 3.2252 |
0.25 | 0.5 | 0.2954 | 0.4281 | 1.2813 | 357.475 | 2.6809 | 3.1674 |
0.25 | 0.7 | 0.2950 | 0.5561 | 1.2930 | 348.889 | 2.6165 | 3.0824 |
0.25 | 0.8 | 0.2945 | 0.6793 | 1.3040 | 344.391 | 2.5828 | 3.0473 |
0.25 | 0.9 | 0.2944 | 0.7662 | 1.3115 | 336.976 | 2.5272 | 2.9723 |
0.25 | 1.0 | 0.2943 | 0.8997 | 1.3232 | 331.210 | 2.4840 | 2.9245 |
0.25 | 1.1 | 0.2942 | 1.0065 | 1.3324 | 325.814 | 2.4435 | 2.8771 |
0.25 | 1.2 | 0.2940 | 1.0873 | 1.3394 | 320.644 | 2.4047 | 2.8284 |
Table 8 Solubility of AlCl3·6H2O (1) in KCl (2)-FeCl3 (3)-H2O (4) (Equilibration time: 6 h)
溶液的浓度和密度 | 用不同单位形式表示的溶解度 (以AlCl3计) | ||||||
---|---|---|---|---|---|---|---|
M2/(mol·L-1) | M3/(mol·L-1) | m2/(mol·(kg H2O)-1) | m3/(mol·(kg H2O)-1) | ρs/(g·ml-1) | C1/(g·L-1) | M1/(mol·L-1) | m1/(mol·(kg H2O)-1) |
T=25℃ | |||||||
0.25 | 0 | 0.2923 | 0 | 1.2523 | 377.606 | 2.8319 | 3.3091 |
0.25 | 0.1 | 0.2921 | 0.1002 | 1.2626 | 374.724 | 2.8103 | 3.2856 |
0.25 | 0.2 | 0.2920 | 0.1940 | 1.2718 | 370.003 | 2.7749 | 3.2409 |
0.25 | 0.4 | 0.2916 | 0.3150 | 1.2837 | 363.840 | 2.7287 | 3.1823 |
0.25 | 0.5 | 0.2907 | 0.4265 | 1.2947 | 356.597 | 2.6743 | 3.1098 |
0.25 | 0.7 | 0.2906 | 0.5452 | 1.3062 | 349.680 | 2.6225 | 3.0435 |
0.25 | 0.8 | 0.2905 | 0.6707 | 1.3180 | 345.142 | 2.5884 | 3.0076 |
0.25 | 0.9 | 0.2899 | 0.7579 | 1.3263 | 338.541 | 2.5389 | 2.9418 |
0.25 | 1.0 | 0.2898 | 0.8715 | 1.3371 | 333.771 | 2.5032 | 2.9013 |
0.25 | 1.1 | 0.2897 | 0.9957 | 1.3486 | 328.333 | 2.4624 | 2.8553 |
0.25 | 1.2 | 0.2888 | 1.0793 | 1.3561 | 320.330 | 2.4024 | 2.7753 |
T=50℃ | |||||||
0.25 | 0 | 0.2968 | 0 | 1.2420 | 379.939 | 2.8494 | 3.3795 |
0.25 | 0.1 | 0.2965 | 0.1098 | 1.2521 | 375.231 | 2.8141 | 3.3375 |
0.25 | 0.2 | 0.2962 | 0.2080 | 1.2613 | 370.293 | 2.7771 | 3.2906 |
0.25 | 0.4 | 0.2956 | 0.3138 | 1.2712 | 363.734 | 2.7279 | 3.2252 |
0.25 | 0.5 | 0.2954 | 0.4281 | 1.2813 | 357.475 | 2.6809 | 3.1674 |
0.25 | 0.7 | 0.2950 | 0.5561 | 1.2930 | 348.889 | 2.6165 | 3.0824 |
0.25 | 0.8 | 0.2945 | 0.6793 | 1.3040 | 344.391 | 2.5828 | 3.0473 |
0.25 | 0.9 | 0.2944 | 0.7662 | 1.3115 | 336.976 | 2.5272 | 2.9723 |
0.25 | 1.0 | 0.2943 | 0.8997 | 1.3232 | 331.210 | 2.4840 | 2.9245 |
0.25 | 1.1 | 0.2942 | 1.0065 | 1.3324 | 325.814 | 2.4435 | 2.8771 |
0.25 | 1.2 | 0.2940 | 1.0873 | 1.3394 | 320.644 | 2.4047 | 2.8284 |
离子对 | B1 | B2 | B3 | C1 | C2 | C3 | D1 | D2 | D3 |
---|---|---|---|---|---|---|---|---|---|
Al3+-Cl- | 0.09215 | 6.4151×10-5 | 1.2147×10-6 | -3.415×10-4 | -7.513×10-6 | -6.851×10-8 | -1.084×10-5 | 1.1475×10-7 | 1.1082×10-9 |
Table 9 Modified Bromley-Zemaitis model parameters for Al3+-Cl- interactions
离子对 | B1 | B2 | B3 | C1 | C2 | C3 | D1 | D2 | D3 |
---|---|---|---|---|---|---|---|---|---|
Al3+-Cl- | 0.09215 | 6.4151×10-5 | 1.2147×10-6 | -3.415×10-4 | -7.513×10-6 | -6.851×10-8 | -1.084×10-5 | 1.1475×10-7 | 1.1082×10-9 |
1 | Li C, Wan J H, Sun H H, et al. Investigation on the activation of coal gangue by a new compound method[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 515-520. |
2 | Qureshi A A, Kazi T G, Baig J A, et al. Exposure of heavy metals in coal gangue soil, in and outside the mining area using BCR conventional and vortex assisted and single step extraction methods. Impact on orchard grass[J]. Chemosphere, 2020, 255: 1-11. |
3 | 常纪文, 杜根杰, 杜建磊, 等. 我国煤矸石综合利用的现状、问题与建议[J]. 中国环保产业, 2022(8): 13-17. |
Chang J W, Du G J, Du J L, et al. Current situation of the comprehensive utilization of coal gangue in China and the related problems and recommendations[J]. China Environmental Protection Industry, 2022(8): 13-17. | |
4 | Stracher G B, Taylor T P. Coal fires burning out of control around the world: thermodynamic recipe for environmental catastrophe[J]. International Journal of Coal Geology, 2004, 59(1/2): 7-17. |
5 | Pone J D N, Hein K A A, Stracher G B, et al. The spontaneous combustion of coal and its by-products in the Witbank and Sasolburg coalfields of South Africa[J]. International Journal of Coal Geology, 2007, 72(2): 124-140. |
6 | Leroy C, Ferro M C, Monteiro R C C, et al. Production of glass-ceramics from coal ashes[J]. Journal of the European Ceramic Society, 2001, 21(2): 195-202. |
7 | Haugsten K E, Gustavson B. Environmental properties of vitrified fly ash from hazardous and municipal waste incineration[J]. Waste Management, 2000, 20(2/3): 167-176. |
8 | 马志斌, 张森, 单雪媛, 等. 煤、煤泥和煤矸石燃烧过程锂镓稀土元素的迁移规律[J]. 化工学报, 2021, 72(6): 3349-3358. |
Ma Z B, Zhang S, Shan X Y, et al. Migration of lithium, gallium and rare earth elements in coal, coal slime, and coal gangue during combustion[J]. CIESC Journal, 2021, 72(6): 3349-3358. | |
9 | 郭志强, 燕可洲, 张吉元, 等. 煤矸石/粉煤灰对赤泥钠化还原焙烧反应的影响机制[J]. 化工学报, 2022, 73(5): 2194-2205. |
Guo Z Q, Yan K Z, Zhang J Y, et al. Influence mechanism of coal gangue/coal fly ash on the sodium reduction roasting reaction of red mud[J]. CIESC Journal, 2022, 73(5): 2194-2205. | |
10 | Zha J F, Guo G L, Wang Q, et al. Study of in-situ sieving experiment and gradation optimization of gangue[J]. Procedia Earth and Planetary Science, 2009, 1(1): 754-759. |
11 | Wang H J, Wang X L, Wang L X. Adsorption performance of methylene blue on modified coal gangue[J]. Advanced Materials Research, 2013, 807/808/809: 521-525. |
12 | Agirre I, Griessacher T, Roesler G, et al. Production of charcoal as an alternative reducing agent from agricultural residues using a semi-continuous semi-pilot scale pyrolysis screw reactor[J]. Fuel Processing Technology, 2013, 106: 114-121. |
13 | Shemi A, Mpana R N, Ndlovu S, et al. Alternative techniques for extracting alumina from coal fly ash[J]. Minerals Engineering, 2012, 34: 30-37. |
14 | Brown R R, Daut G E, Mrazek R V, et al. Solubility and activity of aluminum chloride in aqueous hydrochloric acid solutions[R]. Report of Investigations 8379, United States Department of the Interior, Bureau of Mines, 1979. |
15 | Richter U, Brand P, Bohmhammel K, et al. Thermodynamic investigations of aqueous solutions of aluminum chloride[J]. The Journal of Chemical Thermodynamics, 2000, 32(2): 145-154. |
16 | Farelo F, Fernandes C, Avelino A. Solubilities for six ternary systems: NaCl+NH4Cl+H2O, KCl+NH4Cl+H2O, NaCl+LiCl+H2O, KCl+LiCl+H2O, NaCl+AlCl3+H2O, and KCl+AlCl3+H2O at T = (298 to 333) K[J]. Journal of Chemical and Engineering Data, 2005, 50(4): 1470-1477. |
17 | Wang J F, Petit C, Zhang X P, et al. Phase equilibrium study of the AlCl3-CaCl2-H2O system for the production of aluminum chloride hexahydrate from Ca-rich flue ash[J]. Journal of Chemical and Engineering Data, 2016, 61(1): 359-369. |
18 | 袁梦霞, 乔秀臣. 三元体系AlCl3+CaCl2+H2O, AlCl3+FeCl3+H2O和CaCl2+FeCl3+H2O在35℃时的相平衡[J]. 化工学报, 2017, 68(7): 2653-2659. |
Yuan M X, Qiao X C. Phase equilibria of AlCl3+CaCl2+H2O, AlCl3+FeCl3 +H2O and CaCl2+FeCl3+H2O ternary systems at 35℃[J]. CIESC Journal, 2017, 68(7): 2653-2659. | |
19 | Pitzer K S. Thermodynamics of electrolytes(Ⅰ): Theoretical basis and general equations[J]. The Journal of Physical Chemistry, 1973, 77(2): 268-277. |
20 | Cheng W T, Li Z B, Cheng F Q. Solubility of Li2CO3 in Na-K-Li-Cl brines from 20 to 90oC[J]. The Journal of Chemical Thermodynamics, 2013, 67: 74-82. |
21 | Cheng W T, Li Z B. Precipitation of nesquehonite from homogeneous supersaturated solutions[J]. Crystal Research and Technology, 2009, 44(9): 937-947. |
22 | Cheng W T, Li Z B. Controlled supersaturation precipitation of hydromagnesite for the MgCl2-Na2CO3 system at elevated temperatures: chemical modeling and experiment[J]. Industrial & Engineering Chemistry Research, 2010, 49(4): 1964-1974. |
23 | Ma J Y, Li Z B. Chemical equilibrium modeling and experimental measurement of solubility for Friedel's salt in the Na-OH-Cl-NO3-H2O systems up to 200oC[J]. Industrial & Engineering Chemistry Research, 2010, 49(19): 8949-8958. |
24 | Thomsen K, Rasmussen P, Gani R. Simulation and optimization of fractional crystallization processes[J]. Chemical Engineering Science, 1998, 53(8): 1551-1564. |
25 | Sun S P, Wang J F, Li Z B. Solubility and self-consistent modeling of aniline hydrochloride in H-Mg-Na-Ca-Al-Cl-H2O system at the temperature range of 288—348 K[J]. Industrial & Engineering Chemistry Research, 2012, 51(9): 3783-3790. |
26 | Berthold J. An Overview of Data Analysis and Data Entry for OLI Programs[M]. New Jersey: OLI Systems Inc., 2006. |
27 | de Lucas A, Rodríguez L, Sánchez P, et al. Comparative study of the solubility of the crystalline layered silicates α-Na2Si2O5 and δ-Na2Si2O5 and the amorphous silicate Na2Si2O5 [J]. Industrial & Engineering Chemistry Research, 2004, 43(6): 1472-1477. |
28 | Power W H, Fabuss B M. Transient solubilities in the calcium sulfate-water system[J]. Journal of Chemical & Engineering Data, 1964, 9(3): 437-442. |
29 | Helgeson H C, Kirkham D H, Flowers G C. Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures ( Ⅳ ) : Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600oC and 5kb[J]. American Journal of Science, 1981, 281(10): 1249-1516. |
30 | Shock E L, Helgeson H C. Erratum to geochim. Cosmochim.: E. L. Shock and H. C. Helgeson: cosmochimica acta 52, pp. 2009–2036[J]. Geochimica et Cosmochimica Acta, 1989, 53(1): 215. |
31 | Shock E L, Sassani D C, Willis M, et al. Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes[J]. Geochimica et Cosmochimica Acta, 1997, 61(5): 907-950. |
32 | Bromley L A. Thermodynamic properties of strong electrolytes in aqueous solutions[J]. AIChE Journal, 1973, 19(2): 313-320. |
33 | Zemaitis J F Jr. Predicting vapor-liquid-solid equilibria in multicomponent aqueous solutions of electrolytes[M] //Thermodynamics of Aqueous Systems with Industrial Applications. Washington, D. C.: American Chemical Society, 1980: 227-246. |
34 | Meissner H P, Kusik C L. Aqueous solutions of two or more strong electrolytes. Vapor pressures and solubilities[J]. Industrial & Engineering Chemistry Process Design and Development, 1973, 12(2): 205-208. |
[1] | Chao HU, Yuming DONG, Wei ZHANG, Hongling ZHANG, Peng ZHOU, Hongbin XU. Preparation of high-concentration positive electrolyte of vanadium redox flow battery by activating vanadium pentoxide with highly concentrated sulfuric acid [J]. CIESC Journal, 2023, 74(S1): 338-345. |
[2] | Xudong YU, Qi LI, Niancu CHEN, Li DU, Siying REN, Ying ZENG. Phase equilibria and calculation of aqueous ternary system KCl + CaCl2 + H2O at 298.2, 323.2, and 348.2 K [J]. CIESC Journal, 2023, 74(8): 3256-3265. |
[3] | Xiaoyu YAO, Jun SHEN, Jian LI, Zhenxing LI, Huifang KANG, Bo TANG, Xueqiang DONG, Maoqiong GONG. Research progress in measurement methods in vapor-liquid critical properties of mixtures [J]. CIESC Journal, 2023, 74(5): 1847-1861. |
[4] | Ke CHEN, Li DU, Ying ZENG, Siying REN, Xudong YU. Phase equilibria and calculation of quaternary system LiCl+MgCl2+CaCl2+H2O at 323.2 K [J]. CIESC Journal, 2023, 74(5): 1896-1903. |
[5] | Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041. |
[6] | Songtao YANG, Dongyang LI, Yuqing NIU, Xingang LI, Shaohui KANG, Hong LI, Kaikai YE, Zhiquan ZHOU, Xin GAO. Molecular simulation progress in studying thermodynamic properties and potential functions of fluorides [J]. CIESC Journal, 2022, 73(9): 3828-3840. |
[7] | Jiaren ZHANG, Haichao LIU. Phase equilibrium of transesterification reaction system between soybean oil and methanol [J]. CIESC Journal, 2022, 73(5): 1920-1929. |
[8] | Yuxin REN, Runfeng XU, Wanying WANG, Pengzhong CHEN, Xiaojun PENG. Synthesis and stability study of anthraquinone dyes for color photoresist [J]. CIESC Journal, 2022, 73(5): 2251-2261. |
[9] | Jiahui REN, Yu LIU, Chao LIU, Lang LIU, Ying LI. Critical temperature prediction of working fluids using molecular fingerprints and topological indices [J]. CIESC Journal, 2022, 73(4): 1493-1500. |
[10] | Wenxin MEN, Qingshou PENG, Xia GUI. Phase equilibrium of CO2 hydrate in the presence of four different quaternary ammonium salts [J]. CIESC Journal, 2022, 73(4): 1472-1482. |
[11] | Mingze SUN, Ning MA, Haoran LI, Haifeng JIANG, Wenpeng HONG, Xiaojuan NIU. Thermodynamic analysis of Brayton cycle of medium and low temperature supercritical CO2 and its mixed working medium [J]. CIESC Journal, 2022, 73(3): 1379-1388. |
[12] | Huaixu LI, Xiaoyan SUN, Shaohui TAO, Li XIA, Shuguang XIANG. Lumping gasoline with molecular properties and density peak clustering [J]. CIESC Journal, 2022, 73(12): 5449-5460. |
[13] |
Siying REN, Xudong YU, Jun LUO, Xia FENG, Zhixing ZHAO, Zhihao YAO.
Phase equilibria of aqueous quaternary system Li+, K+, |
[14] | Xueping ZHANG, Ruizhi CUI, Shihua SANG. Experiment and calculation of phase equilibrium in ternary systems NaBr-CaBr2-H2O and KBr-CaBr2-H2O at 273.15 K [J]. CIESC Journal, 2021, 72(9): 4479-4486. |
[15] | Shengzheng GUO, Songgu WU, Xin SU, Wei GAO, Zhiping NIU, Junbo GONG. Determination of solubility and metastable zone width of rebaudioside A and study on its crystallization process [J]. CIESC Journal, 2021, 72(8): 3997-4008. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||