CIESC Journal ›› 2023, Vol. 74 ›› Issue (2): 511-524.DOI: 10.11949/0438-1157.20221021
• Reviews and monographs • Previous Articles Next Articles
Chenghao ZHANG(), Jing LUO, Jisong ZHANG()
Received:
2022-07-25
Revised:
2022-09-26
Online:
2023-03-21
Published:
2023-02-05
Contact:
Jisong ZHANG
通讯作者:
张吉松
作者简介:
章承浩(1998—),男,博士研究生,zhangch20@mails.tsinghua.edu.cn
基金资助:
CLC Number:
Chenghao ZHANG, Jing LUO, Jisong ZHANG. Advances in continuous aerobic oxidation based on nitroxyl radical catalyst in microreactors[J]. CIESC Journal, 2023, 74(2): 511-524.
章承浩, 罗京, 张吉松. 微反应器内基于氮氧自由基催化剂连续氧气/空气氧化反应的研究进展[J]. 化工学报, 2023, 74(2): 511-524.
Fig.7 Schematic diagram of the continuous flow three-phase reactor[49]1—oxygen reservoir; 2—liquid reservoir; 3—pressure reducing valve; 4—mass flow controller; 5—HPLC pump; 6—gas-liquid mixer; 7—segmented flow; 8—fixed bed reactor; 9—back-pressure regular; 10—gas-liquid separator; 11—liquid-flow passing through transmission IR cell
1 | González-Núñez M E, Mello R, Olmos A, et al. Oxidation of alcohols to carbonyl compounds with CrO3·SiO2 in supercritical carbon dioxide[J]. The Journal of Organic Chemistry, 2006, 71(3): 1039-1042. |
2 | Taylor R J K, Reid M, Foot J, et al. Tandem oxidation processes using manganese dioxide: discovery, applications, and current studies[J]. Accounts of Chemical Research, 2005, 38(11): 851-869. |
3 | Taber D F, Amedio J C, Jung K Y. Phosphorus pentoxide/dimethyl sulfoxide/triethylamine(PDT): a convenient procedure for oxidation of alcohols to ketones and aldehydes[J]. The Journal of Organic Chemistry, 1987, 52(25): 5621-5622. |
4 | Bryan M C, Dunn P J, Entwistle D, et al. Key green chemistry research areas from a pharmaceutical manufacturers' perspective revisited[J]. Green Chemistry, 2018, 20(22): 5082-5103. |
5 | Cavani F, Teles J H. Sustainability in catalytic oxidation: an alternative approach or a structural evolution? [J]. ChemSusChem, 2009, 2(6): 508-534. |
6 | Galvanin F, Sankar M, Cattaneo S, et al. On the development of kinetic models for solvent-free benzyl alcohol oxidation over a gold-palladium catalyst[J]. Chemical Engineering Journal, 2018, 342: 196-210. |
7 | Constantinou A, Wu G W, Venezia B, et al. Aerobic oxidation of benzyl alcohol in a continuous catalytic membrane reactor[J]. Topics in Catalysis, 2019, 62(17/18/19/20): 1126-1131. |
8 | Battino R, Rettich T R, Tominaga T. The solubility of oxygen and ozone in liquids[J]. Journal of Physical and Chemical Reference Data, 1983, 12(2): 163-178. |
9 | Hone C A, Kappe C O. The use of molecular oxygen for liquid phase aerobic oxidations in continuous flow[J]. Topics in Current Chemistry (Cham), 2018, 377(1): 2. |
10 | Dijksman A, Marino-González A, Payeras A M I, et al. Efficient and selective aerobic oxidation of alcohols into aldehydes and ketones using ruthenium/TEMPO as the catalytic system[J]. Journal of the American Chemical Society, 2001, 123(28): 6826-6833. |
11 | Gemoets H P L, Su Y H, Shang M J, et al. Liquid phase oxidation chemistry in continuous-flow microreactors[J]. Chemical Society Reviews, 2016, 45(1): 83-117. |
12 | Pasha M, Liu S E, Zhang J, et al. Recent advancements on hydrodynamics and mass transfer characteristics for CO2 absorption in microreactors[J]. Industrial & Engineering Chemistry Research, 2022, 61(34): 12249-12268. |
13 | Tanimu A, Jaenicke S, Alhooshani K. Heterogeneous catalysis in continuous flow microreactors: a review of methods and applications[J]. Chemical Engineering Journal, 2017, 327: 792-821. |
14 | Yang C X, Teixeira A R, Shi Y X, et al. Catalytic hydrogenation of N-4-nitrophenyl nicotinamide in a micro-packed bed reactor[J]. Green Chemistry, 2018, 20(4): 886-893. |
15 | Mohamed D K B, Yu X J, Li J S, et al. Reaction screening in continuous flow reactors[J]. Tetrahedron Letters, 2016, 57(36): 3965-3977. |
16 | Leclerc A, Alamé M, Schweich D, et al. Gas-liquid selective oxidations with oxygen under explosive conditions in a micro-structured reactor[J]. Lab on a Chip, 2008, 8(5): 814-817. |
17 | Zhang J S, Teixeira A R, Kögl L T, et al. Hydrodynamics of gas-liquid flow in micropacked beds: pressure drop, liquid holdup, and two-phase model[J]. AIChE Journal, 2017, 63(10): 4694-4704. |
18 | Sang L, Feng X D, Tu J C, et al. Investigation of external mass transfer in micropacked bed reactors[J]. Chemical Engineering Journal, 2020, 393: 124793. |
19 | Elvira K S, Solvas X C i, Wootton R C R, et al. The past, present and potential for microfluidic reactor technology in chemical synthesis[J]. Nature Chemistry, 2013, 5(11): 905-915. |
20 | Brooks M R, Crowl D A. Flammability envelopes for methanol, ethanol, acetonitrile and toluene[J]. Journal of Loss Prevention in the Process Industries, 2007, 20(2): 144-150. |
21 | Veser G. Experimental and theoretical investigation of H2 oxidation in a high-temperature catalytic microreactor[J]. Chemical Engineering Science, 2001, 56(4): 1265-1273. |
22 | Aellig C, Scholz D, Hermans I. Metal-free aerobic alcohol oxidation: intensification under three-phase flow conditions[J]. ChemSusChem, 2012, 5(9): 1732-1736. |
23 | Bennett J A, Campbell Z S, Abolhasani M. Role of continuous flow processes in green manufacturing of pharmaceuticals and specialty chemicals[J]. Current Opinion in Chemical Engineering, 2019, 26: 9-19. |
24 | Hartman R L. Flow chemistry remains an opportunity for chemists and chemical engineers[J]. Current Opinion in Chemical Engineering, 2020, 29: 42-50. |
25 | Akwi F M, Watts P. Continuous flow chemistry: where are we now? Recent applications, challenges and limitations[J]. Chemical Communications, 2018, 54(99): 13894-13928. |
26 | Yue J, Luo L G, Gonthier Y, et al. An experimental study of air-water Taylor flow and mass transfer inside square microchannels[J]. Chemical Engineering Science, 2009, 64(16): 3697-3708. |
27 | Yue J, Chen G W, Yuan Q, et al. Hydrodynamics and mass transfer characteristics in gas-liquid flow through a rectangular microchannel[J]. Chemical Engineering Science, 2007, 62(7): 2096-2108. |
28 | Zhang J S, Teixeira A R, Jensen K F. Automated measurements of gas-liquid mass transfer in micropacked bed reactors[J]. AIChE Journal, 2018, 64(2): 564-570. |
29 | Zhang C H, Duan X N, Yin J B, et al. Copper/TEMPO-catalyzed continuous aerobic alcohol oxidation in a micro-packed bed reactor[J]. Reaction Chemistry & Engineering, 2022, 7(6): 1289-1296. |
30 | Yue J. Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis[J]. Catalysis Today, 2018, 308: 3-19. |
31 | Wang N W, Matsumoto T, Ueno M, et al. A gold-immobilized microchannel flow reactor for oxidation of alcohols with molecular oxygen[J]. Angewandte Chemie International Edition, 2009, 48(26): 4744-4746. |
32 | Hernandez-Alvarado F, Kalaga D V, Turney D, et al. Void fraction, bubble size and interfacial area measurements in co-current downflow bubble column reactor with microbubble dispersion[J]. Chemical Engineering Science, 2017, 168: 403-413. |
33 | Mase N, Mizumori T, Tatemoto Y. Aerobic copper/TEMPO-catalyzed oxidation of primary alcohols to aldehydes using a microbubble strategy to increase gas concentration in liquid phase reactions[J]. Chemical Communications, 2011, 47(7): 2086. |
34 | Osterberg P M, Niemeier J K, Welch C J, et al. Experimental limiting oxygen concentrations for nine organic solvents at temperatures and pressures relevant to aerobic oxidations in the pharmaceutical industry[J]. Organic Process Research & Development, 2015, 19(11): 1537-1543. |
35 | O'Brien M, Taylor N, Polyzos A, et al. Hydrogenation in flow: homogeneous and heterogeneous catalysis using Teflon AF-2400 to effect gas-liquid contact at elevated pressure[J]. Chemical Science, 2011, 2(7): 1250. |
36 | Wu G W, Constantinou A, Cao E H, et al. Continuous heterogeneously catalyzed oxidation of benzyl alcohol using a tube-in-tube membrane microreactor[J]. Industrial & Engineering Chemistry Research, 2015, 54(16): 4183-4189. |
37 | Greene J F, Preger Y, Stahl S S, et al. PTFE-membrane flow reactor for aerobic oxidation reactions and its application to alcohol oxidation[J]. Organic Process Research & Development, 2015, 19(7): 858-864. |
38 | Mo Y M, Imbrogno J, Zhang H M, et al. Scalable thin-layer membrane reactor for heterogeneous and homogeneous catalytic gas-liquid reactions[J]. Green Chemistry, 2018, 20(16): 3867-3874. |
39 | Wu G W, Cao E H, Ellis P, et al. Development of a flat membrane microchannel packed-bed reactor for scalable aerobic oxidation of benzyl alcohol in flow[J]. Chemical Engineering Journal, 2019, 377: 120086. |
40 | Beejapur H A, Zhang Q, Hu K C, et al. TEMPO in chemical transformations: from homogeneous to heterogeneous[J]. ACS Catalysis, 2019, 9(4): 2777-2830. |
41 | 黄斌, 张宁, 洪三国, 等. 氮氧自由基催化有机物的分子氧氧化研究进展[J]. 分子催化, 2009, 23(4): 377-385. |
Huang B, Zhang N, Hong S G, et al. Advances in molecular oxygen oxidation of organic compounds catalyzed by nitroxide free radicals[J]. Journal of Molecular Catalysis, 2009, 23(4): 377-385. | |
42 | Semmelhack M F, Schmid C R, Cortes D A, et al. Oxidation of alcohols to aldehydes with oxygen and cupric ion, mediated by nitrosonium ion[J]. Journal of the American Chemical Society, 1984, 106(11): 3374-3376. |
43 | Hoover J M, Ryland B L, Stahl S S. Mechanism of copper(Ⅰ)/TEMPO-catalyzed aerobic alcohol oxidation[J]. Journal of the American Chemical Society, 2013, 135(6): 2357-2367. |
44 | Hoover J M, Stahl S S. Highly practical copper ( Ⅰ ) /TEMPO catalyst system for chemoselective aerobic oxidation of primary alcohols[J]. Journal of the American Chemical Society, 2011, 133(42): 16901-16910. |
45 | Kim J, Stahl S S. Cu/nitroxyl catalyzed aerobic oxidation of primary amines into nitriles at room temperature[J]. ACS Catalysis, 2013, 3(7): 1652-1656. |
46 | Obermayer D, Balu A M, Romero A A, et al. Nanocatalysis in continuous flow: supported iron oxide nanoparticles for the heterogeneous aerobic oxidation of benzyl alcohol[J]. Green Chemistry, 2013, 15(6): 1530. |
47 | 阮万民, 王建黎. 负载型TEMPO催化剂研究进展[J]. 工业催化, 2015, 23(12): 961-965. |
Ruan W M, Wang J L. Progress in supported TEMPO catalysts[J]. Industrial Catalysis, 2015, 23(12): 961-965. | |
48 | Megiel E. Surface modification using TEMPO and its derivatives[J]. Advances in Colloid and Interface Science, 2017, 250: 158-184. |
49 | Aellig C, Scholz D, Conrad S, et al. Intensification of TEMPO-mediated aerobic alcohol oxidations under three-phase flow conditions[J]. Green Chemistry, 2013, 15(7): 1975. |
50 | Vernet G, Salehi M S, Lopatka P, et al. Cu-catalyzed aerobic oxidation of diphenyl sulfide to diphenyl sulfoxide within a segmented flow regime: modeling of a consecutive reaction network and reactor characterization[J]. Chemical Engineering Journal, 2021, 416: 129045. |
51 | Kashiwagi Y, Chiba S, Anzai J I. Oxidation of alcohols with nitroxyl radical under polymer-supported two-phase conditions[J]. New Journal of Chemistry, 2003, 27(11): 1545. |
52 | Hu Z Z, Kerton F M. Simple copper/TEMPO catalyzed aerobic dehydrogenation of benzylic amines and anilines[J]. Organic & Biomolecular Chemistry, 2012, 10(8): 1618-1624. |
53 | Tian H W, Yu X C, Li Q, et al. General, green, and scalable synthesis of imines from alcohols and amines by a mild and efficient copper-catalyzed aerobic oxidative reaction in open air at room temperature[J]. Advanced Synthesis & Catalysis, 2012, 354(14/15): 2671-2677. |
54 | Lauber M B, Stahl S S. Efficient aerobic oxidation of secondary alcohols at ambient temperature with an ABNO/NO x catalyst system[J]. ACS Catalysis, 2013, 3(11): 2612-2616. |
55 | Shibuya M, Tomizawa M, Suzuki I, et al. 2-Azaadamantane N-oxyl (AZADO) and 1-me-AZADO: highly efficient organocatalysts for oxidation of alcohols[J]. ChemInform, 2006, 37(45): no. |
56 | Anelli P L, Banfi S, Montanari F, et al. Oxidation of diols with alkali hypochlorites catalyzed by oxammonium salts under two-phase conditions[J]. The Journal of Organic Chemistry, 1989, 54(12): 2970-2972. |
57 | Shibuya M, Tomizawa M, Sasano Y, et al. An expeditious entry to 9-azabicyclo[3.3.1]nonane N-oxyl (ABNO): another highly active organocatalyst for oxidation of alcohols[J]. The Journal of Organic Chemistry, 2009, 74(12): 4619-4622. |
58 | Steves J E, Preger Y, Martinelli J R, et al. Process development of CuⅠ/ABNO/NMI-catalyzed aerobic alcohol oxidation[J]. Organic Process Research & Development, 2015, 19(11): 1548-1553. |
59 | Zultanski S L, Zhao J Y, Stahl S S. Practical synthesis of amides via copper/ABNO-catalyzed aerobic oxidative coupling of alcohols and amines[J]. Journal of the American Chemical Society, 2016, 138(20): 6416-6419. |
60 | Sonobe T, Oisaki K, Kanai M. Catalytic aerobic production of imines en route to mild, green, and concise derivatizations of amines[J]. Chemical Science, 2012, 3(11): 3249. |
61 | Miles K C, Abrams M L, Landis C R, et al. KetoABNO/NO x cocatalytic aerobic oxidation of aldehydes to carboxylic acids and access to α‑chiral carboxylic acids via sequential asymmetric hydroformylation/oxidation[J]. Organic Letters, 2016, 18(15): 3590-3593. |
62 | Iwabuchi Y. Discovery and exploitation of AZADO: the highly active catalyst for alcohol oxidation[J]. Chemical & Pharmaceutical Bulletin, 2013, 61(12): 1197-1213. |
63 | Hayashi M, Sasano Y, Nagasawa S, et al. 9-Azanoradamantane N-oxyl (Nor-AZADO): a highly active organocatalyst for alcohol oxidation[J]. Chemical & Pharmaceutical Bulletin, 2011, 59(12): 1570-1573. |
64 | Nakai S, Yatabe T, Suzuki K, et al. Methyl-selective α-oxygenation of tertiary amines to formamides by employing copper/moderately hindered nitroxyl radical (DMN-AZADO or 1-me-AZADO)[J]. Angewandte Chemie International Edition, 2019, 58(46): 16651-16659. |
65 | Recupero F, Punta C. Free radical functionalization of organic compounds catalyzed by N-hydroxyphthalimide[J]. ChemInform, 2007, 38(51): 3800-3842. |
66 | Ishii Y, Sakaguchi S. Recent progress in aerobic oxidation of hydrocarbons by N-hydroxyimides[J]. Catalysis Today, 2006, 117(1/2/3): 105-113. |
67 | Jafarpour M, Rezaeifard A, Yasinzadeh V, et al. Starch-coated maghemite nanoparticles functionalized by a novel cobalt Schiff base complex catalyzes selective aerobic benzylic C—H oxidation[J]. RSC Advances, 2015, 5(48): 38460-38469. |
68 | Serra A C, Rocha Gonsalves A M D. Mild oxygen activation with isobutyraldehyde promoted by simple salts[J]. Tetrahedron Letters, 2011, 52(27): 3489-3491. |
69 | Nagy B S, Kappe C O, Ötvös S B. N-hydroxyphthalimide catalyzed aerobic oxidation of aldehydes under continuous flow conditions[J]. Advanced Synthesis and Catalysis, 2022, 364(12): 1998-2008. |
70 | Minisci F, Punta C, Recupero F, et al. Aerobic oxidation of N-alkylamides catalyzed by N-hydroxyphthalimide under mild conditions. Polar and enthalpic effects[J]. The Journal of Organic Chemistry, 2002, 67(8): 2671-2676. |
71 | Cecchetto A, Minisci F, Recupero F, et al. A new selective free radical synthesis of aromatic aldehydes by aerobic oxidation of tertiary benzylamines catalysed by N-hydroxyimides and C o ( Ⅱ ) under mild conditions. Polar and enthalpic effects[J]. Tetrahedron Letters, 2002, 43(19): 3605-3607. |
72 | Fukuda O, Sakaguchi S, Ishii Y. A new strategy for catalytic Baeyer-Villiger oxidation of KA-oil with molecular oxygen using N-hydroxyphthalimide[J]. Tetrahedron Letters, 2001, 42(20): 3479-3481. |
73 | Dai P F, Qu J P, Kang Y B. Organocatalyzed aerobic oxidation of aldehydes to acids[J]. Organic Letters, 2019, 21(5): 1393-1396. |
74 | Yun L, Zhao J N, Tang X F, et al. Selective oxidation of benzylic sp3 C—H bonds using molecular oxygen in a continuous-flow microreactor[J]. Organic Process Research & Development, 2021, 25(7): 1612-1618. |
75 | Zhu Y G, Wang Q, Cornwall R G, et al. Organocatalytic asymmetric epoxidation and aziridination of olefins and their synthetic applications[J]. Chemical Reviews, 2014, 114(16): 8199-8256. |
76 | Minisci F, Gambarotti C, Pierini M, et al. Molecule-induced homolysis of N-hydroxyphthalimide(NHPI) by peracids and dioxirane. A new, simple, selective aerobic radical epoxidation of alkenes[J]. Tetrahedron Letters, 2006, 47(9): 1421-1424. |
77 | Spaccini R, Liguori L, Punta C, et al. Organocatalyzed epoxidation of alkenes in continuous flow using a multi-jet oscillating disk reactor[J]. ChemSusChem, 2012, 5(2): 261-265. |
78 | Sawatari N, Yokota T, Sakaguchi S, et al. Alkane oxidation with air catalyzed by lipophilic N-hydroxyphthalimides without any solvent[J]. The Journal of Organic Chemistry, 2001, 66(23): 7889-7891. |
79 | Ueda C, Noyama M, Ohmori H, et al. Reactivity of phthalimide-N-oxyl: a kinetic study[J]. Chemical and Pharmaceutical Bulletin, 1987, 35(4): 1372-1377. |
80 | Jarrahpour A, Fadavi A, Zarei M. Synthesis of structurally diverse 2-azetidinones via staudinger reaction on a solid support[J]. Bulletin of the Chemical Society of Japan, 2011, 84(3): 320-327. |
81 | Shi G J, Xu S H, Bao Y, et al. Selective aerobic oxidation of toluene to benzaldehyde on immobilized CoO x on SiO2 catalyst in the presence of N-hydroxyphthalimide and hexafluoropropan-2-ol[J]. Catalysis Communications, 2019, 123: 73-78. |
82 | Kasperczyk K, Orlinska B, Witek E, et al. Polymer-supported N-hydroxyphthalimide as catalyst for toluene and p-methoxytoluene aerobic oxidation[J]. Catalysis Letters, 2015, 145(10): 1856-1867. |
83 | Melone L, Prosperini S, Gambarotti C, et al. Selective catalytic aerobic oxidation of substituted ethylbenzenes under mild conditions[J]. Journal of Molecular Catalysis A: Chemical, 2012, 355: 155-160. |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[3] | Baiyu YANG, Yue KOU, Juntao JIANG, Yali ZHAN, Qinghong WANG, Chunmao CHEN. Chemical conversion of dissolved organic matter in petrochemical spent caustic along a wet air oxidation pretreatment process [J]. CIESC Journal, 2023, 74(9): 3912-3920. |
[4] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[5] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
[6] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[7] | Kaixuan LI, Wei TAN, Manyu ZHANG, Zhihao XU, Xuyu WANG, Hongbing JI. Design of cobalt-nitrogen-carbon/activated carbon rich in zero valent cobalt active site and application of catalytic oxidation of formaldehyde [J]. CIESC Journal, 2023, 74(8): 3342-3352. |
[8] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[9] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[10] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
[11] | Pan LI, Junyang MA, Zhihao CHEN, Li WANG, Yun GUO. Effect of the morphology of Ru/α-MnO2 on NH3-SCO performance [J]. CIESC Journal, 2023, 74(7): 2908-2918. |
[12] | Chen WANG, Xiufeng SHI, Xianfeng WU, Fangjia WEI, Haohong ZHANG, Yin CHE, Xu WU. Preparation of Mn3O4 catalyst by redox method and study on its catalytic oxidation performance and mechanism of toluene [J]. CIESC Journal, 2023, 74(6): 2447-2457. |
[13] | Zhihang ZHENG, Junnan MA, Zihan YAN, Chunxi LU. Study on the pressure pulsation characteristics in jet influence zone of riser [J]. CIESC Journal, 2023, 74(6): 2335-2350. |
[14] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[15] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 283
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 310
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||