CIESC Journal ›› 2023, Vol. 74 ›› Issue (2): 525-534.DOI: 10.11949/0438-1157.20221002
• Reviews and monographs • Previous Articles Next Articles
Mengbo ZHANG(), Linjin LOU, Yirong FENG, Yuting ZHENG, Haomiao ZHANG(), Jingdai WANG, Yongrong YANG
Received:
2022-07-19
Revised:
2022-10-10
Online:
2023-03-21
Published:
2023-02-05
Contact:
Haomiao ZHANG
张梦波(), 楼琳瑾, 冯艺荣, 郑雨婷, 张浩淼(), 王靖岱, 阳永荣
通讯作者:
张浩淼
作者简介:
张梦波(2000—),男,硕士研究生,22128096@zju.edu.cn
基金资助:
CLC Number:
Mengbo ZHANG, Linjin LOU, Yirong FENG, Yuting ZHENG, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on synthesis of alkylaluminoxanes[J]. CIESC Journal, 2023, 74(2): 525-534.
张梦波, 楼琳瑾, 冯艺荣, 郑雨婷, 张浩淼, 王靖岱, 阳永荣. 烷基铝氧烷合成技术研究进展[J]. 化工学报, 2023, 74(2): 525-534.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 Schematic of the flow platform for MAO synthesis (a), capillary-based microdroplet generator (b), T-micromixer (c), 6 μCSTRs-in-series (d), and gas/liquid/solid three-phase separator (e)[59]
Fig.3 (a) Schematic of the flow platform for IBAO synthesis; (b) Schematic of coiled tubular microreactor; (c) Two-phase flow pattern distribution during the reaction; (d) temperature distribution during the reaction [69]
产品名称 | 产品型号 | 分子式 | 溶剂 | CAS号 |
---|---|---|---|---|
3A型改性甲基铝氧烷 | MMAO-3A | —[(CH3)0.7(i-C4H9)0.3AlO] x — | 正庚烷 | 146905-79-5 |
7型改性甲基铝氧烷 | MMAO-7 | —[(CH3)0.86(n-C8H17)0.14AlO] x — | Isopar ETM | 206451-54-9 |
12型改性甲基铝氧烷 | MMAO-12 | —[(CH3)0.95(n-C8H17)0.05AlO] x — | 甲苯 | 206-54-9 |
Table 1 Representative commercial MMAO products
产品名称 | 产品型号 | 分子式 | 溶剂 | CAS号 |
---|---|---|---|---|
3A型改性甲基铝氧烷 | MMAO-3A | —[(CH3)0.7(i-C4H9)0.3AlO] x — | 正庚烷 | 146905-79-5 |
7型改性甲基铝氧烷 | MMAO-7 | —[(CH3)0.86(n-C8H17)0.14AlO] x — | Isopar ETM | 206451-54-9 |
12型改性甲基铝氧烷 | MMAO-12 | —[(CH3)0.95(n-C8H17)0.05AlO] x — | 甲苯 | 206-54-9 |
1 | Kaminsky W. Discovery of methylaluminoxane as cocatalyst for olefin polymerization[J]. Macromolecules, 2012, 45(8): 3289-3297. |
2 | Kaminsky W. The discovery and evolution of metallocene-based olefin polymerization catalysts[J]. Rendiconti Lincei, 2017, 28(1): 87-95. |
3 | 吴江. 甲基铝氧烷合成技术研究[D]. 兰州: 兰州大学, 2007. |
Wu J. Study in synthetic technology of methylaluminoxane[D]. Lanzhou: Lanzhou University, 2007. | |
4 | Zijlstra H S, Harder S. Methylalumoxane-history, production, properties, and applications[J]. European Journal of Inorganic Chemistry, 2015, 2015(1): 19-43. |
5 | Oliva L, Oliva P, Galdi N, et al. Solution structure and reactivity with metallocenes of AlMe2F: mimicking cation-anion interactions in metallocenium-methylalumoxane inner-sphere ion pairs[J]. Angewandte Chemie International Edition, 2017, 56(45): 14227-14231. |
6 | Rabinovich D. The allure of aluminium[J]. Nature Chemistry, 2012, 5: 76. |
7 | Glaser R, Sun X S. Thermochemistry of the initial steps of methylaluminoxane formation. Aluminoxanes and cycloaluminoxanes by methane elimination from dimethylaluminum hydroxide and its dimeric aggregates[J]. Journal of the American Chemical Society, 2011, 133(34): 13323-13336. |
8 | Linnolahti M, Severn J R, Pakkanen T A. Formation of nanotubular methylaluminoxanes and the nature of the active species in single-site α-olefin polymerization catalysis[J]. Angewandte Chemie International Edition, 2008, 47(48): 9279-9283. |
9 | Busico V, Cipullo R, Cutillo F, et al. Improving the performance of methylalumoxane: a facile and efficient method to trap “free” trimethylaluminum[J]. Journal of the American Chemical Society, 2003, 125(41): 12402-12403. |
10 | Linnolahti M, Severn J R, Pakkanen T A. Are aluminoxanes nanotubular? Structural evidence from a quantum chemical study[J]. Angewandte Chemie International Edition, 2006, 45(20): 3331-3334. |
11 | Pasynkiewicz S. Alumoxanes: synthesis, structures, complexes and rections[J]. Polyhedron, 1990, 9: 429-453. |
12 | Velthoen M E Z, Muñoz-Murillo A, Bouhmadi A, et al. The multifaceted role of methylaluminoxane in metallocene-based olefin polymerization catalysis[J]. Macromolecules, 2018, 51(2): 343-355. |
13 | Kleinschmidt R, van der leek Y, Reffke M, et al. Kinetics and mechanistic insight into propylene polymerization with different metallocenes and various aluminium alkyls as cocatalysts[J]. Journal of Molecular Catalysis A: Chemical, 1999, 148(1): 29-41. |
14 | Ioku A, Hasan T, Shiono T, et al. Effects of cocatalysts on propene polymerization with [t-BuNSiMe2(C5Me4)]TiMe2 [J]. Macromolecular Chemistry and Physics, 2002, 203(4): 748-755. |
15 | Hoff R. Handbook of Transition Metal Polymerization Catalysts [M]. 2nd ed. New Jersey: John Wiley & Sons, Inc., 2018. |
16 | Bochmann M. The chemistry of catalyst activation: the case of group 4 polymerization catalysts[J]. Organometallics, 2010, 29(21): 4711-4740. |
17 | Kaminsky W. The discovery of metallocene catalysts and their present state of the art[J]. Journal of Polymer Science Part A-Polymer Chemistry, 2004, 42(16): 3911-3921. |
18 | Edwards D N, Briggs J R, Marcinkowsky A E, et al. Process for the preparation of aluminoxanes: US4772736[P]. 1988-09-20. |
19 | Giannetti E, Nicoletti G M, Mazzocchi R. Homogeneous Ziegler Natta catalysis.2. Ethylene polymerization by IVB transition-metal complexes/methyl aluminoxane catalyst systems[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1985, 23(8): 2117-2134. |
20 | Deavenport D L, Hodges Iii J T, Malpass D B, et al. Preparation of aluminoxanes: US5041585[P]. 1991-08-20. |
21 | 吴江, 韦少义, 陈雪蓉, 等. 一种雾化合成装置及其在烷基铝氧烷合成方面的应用: 102190677B[P]. 2010-03-03. |
Wu J, Wei S Y, Chen X R, et al. A kind of atomization synthesis device and its application in the synthesis of alkyl aluminoxide: 102190677B[P]. 2010-03-03. | |
22 | Smith G Z Jr. Falling film aluminoxane process: US5103031[P]. 1992-04-07. |
23 | Kilpatrick A F R, Buffet J-C, Nørby P, et al. Synthesis and characterization of solid polymethylaluminoxane: a bifunctional activator and support for slurry-phase ethylene polymerization[J]. Chemistry of Materials, 2016, 28(20): 7444-7450. |
24 | 韦少义, 朱博超, 陈雪蓉, 等. 烷基铝氧烷的制备方法: 100413870C[P]. 2008-08-27. |
Wei S Y, Zhu B C, Chen X R, et al. Preparation method of alkyl aluminoxicane: 100413870C[P]. 2008-08-27. | |
25 | Sinn H. Proposals for structure and effect of methylalumoxane based on mass balances and phase separation experiments[J]. Macromolecular Symposia, 1995, 97(1): 27-52. |
26 | Sinn H, Clausnitzer D, Winter H. Process for producing aluminum oxanes, in particular methylaluminum oxane, from water and organoaluminum compounds, in particular trimethylaluminum, in inert hydrocarbons: US5087713[P]. 1992-02-11. |
27 | Roberg J K, Burt E A. High yield aluminoxane synthesis process: US5663394[P]. 1997-09-02. |
28 | Cam D, Albizzati E, Cinquina P. Characterization of methylalumoxane by means of gel-permeation chromatography[J]. Makromolekulare Chemie-Macromolecular Chemistry and Physics, 1990, 191(7): 1641-1647. |
29 | Resconi L, Bossi S, Abis L. Study on the role of methylalumoxane in homogeneous olefin polymerization[J]. Macromolecules, 1990, 23(20): 4489-4491. |
30 | Soga K, Yu C H, Shiono T. Polymerization of alpha-olefins with the catalyst system prepared from a hydrated transition-metal compound and trimethylaluminum[J]. Makromolekulare Chemie-Rapid Communications, 1988, 9(3): 141-144. |
31 | Okajima Y, Nakayama Y, Shiono T, et al. Preparation of methylaluminoxane from CO2 and Me3Al[J]. European Journal of Inorganic Chemistry, 2019(18): 2392-2395. |
32 | Kinnunen T J J, Haukka M, Pakkanen T, et al. Four-coordinated bipyridine complexes of nickel for ethene polymerization — the role of ligand structure[J]. Journal of Organometallic Chemistry 2000, 613: 257-262. |
33 | Dalet T, Cramail H, Deffieux A. Non-hydrolytic route to aluminoxane-type derivative for metallocene activation towards olefin polymerisation[J]. Macromolecular Chemistry and Physics, 2004, 205(10): 1394-1401. |
34 | Jensen K F. Microreaction engineering — is small better?[J]. Chemical Engineering Science, 2001, 56(2): 293-303. |
35 | Newman S G, Jensen K F. The role of flow in green chemistry and engineering[J]. Green Chemistry, 2013, 15(6): 1456-1472. |
36 | Jensen K F. Flow chemistry—microreaction technology comes of age[J]. AIChE Journal, 2017, 63(3): 858-869. |
37 | 骆广生, 王凯, 王玉军, 等. 微化工系统的原理和应用[J]. 化工进展, 2011, 30(8): 1637-1642. |
Luo G S, Wang K, Wang Y J, et al. Principles and applications of micro-structured chemical system[J]. Chemical Industry and Engineering Progress, 2011, 30(8): 1637-1642. | |
38 | Zhang J, Wang K, Teixeira A R, et al. Design and scaling up of microchemical systems: a review[J]. Annual review of chemical biomolecular engineering, 2017, 8: 285-305. |
39 | Bedard A C, Adamo A, Aroh K C, et al. Reconfigurable system for automated optimization of diverse chemical reactions[J]. Science, 2018, 361(6408): 1220-1225. |
40 | Britton J, Raston C L. Multi-step continuous-flow synthesis[J]. Chemical Society Reviews, 2017, 46(5): 1250-1271. |
41 | Liu D, Jing Y, Wang K, et al. Reaction study of α-phase NaYF4:Yb,Er generation via a tubular microreactor: discovery of an efficient synthesis strategy[J]. Nanoscale, 2019, 11(17): 8363-8371. |
42 | Reis M H, Leibfarth F A, Pitet L M. Polymerizations in continuous flow: recent advances in the synthesis of diverse polymeric materials[J]. ACS Macro Letters, 2020, 9(1): 123-133. |
43 | Zaquen N, Rubens M, Corrigan N, et al. Polymer synthesis in continuous flow reactors[J]. Progress in Polymer Science, 2020, 107: 101256. |
44 | Tonhauser C, Nataello A, Lowe H, et al. Microflow technology in polymer synthesis[J]. Macromolecules, 2012, 45(24): 9551-9570. |
45 | Marre S, Adamo A, Basak S, et al. Design and packaging of microreactors for high pressure and high temperature applications[J]. Industrial & Engineering Chemistry Research, 2010, 49(22): 11310-11320. |
46 | Ehrfeld W, Hessel V, Löwe H. Microreactors: New Technology for Modern Chemistry[M]. Mainz: IMM Mainz GmbH, 2000. |
47 | Zhang J S, Wang K, Lu Y C, et al. Beckmann rearrangement in a microstructured chemical system for the preparation of ε-caprolactam[J]. AIChE Journal, 2012, 58(3): 925-931. |
48 | Wang K, Zhang H, Shen Y, et al. Thermoformed fluoropolymer tubing for in-line mixing[J]. Reaction Chemistry & Engineering, 2018, 3(5): 707-713. |
49 | Cambie D, Bottecchia C, Straathof N J W, et al. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment[J]. Chemical Reviews, 2016, 116(17): 10276-10341. |
50 | Buglioni L, Raymenants F, Slattery A, et al. Technological innovations in photochemistry for organic synthesis: flow chemistry, high-throughput experimentation, scale-up, and photoelectrochemistry[J]. Chemical Reviews, 2022, 122(2): 2752-2906. |
51 | Campbell Z S, Abolhasani M. Facile synthesis of anhydrous microparticles using plug-and-play microfluidic reactors[J]. Reaction Chemistry & Engineering, 2020, 5(7): 1198-1211. |
52 | Bennett J A, Kristof A J, Vasudevan V, et al. Microfluidic synthesis of elastomeric microparticles: a case study in catalysis of palladium-mediated cross-coupling[J]. AIChE Journal, 2018, 64(8): 3188-3197. |
53 | Lebl R, Zhu Y, Ng D, et al. Scalable continuous flow hydrogenations using Pd/Al2O3-coated rectangular cross-section 3D-printed static mixers[J]. Catalysis Today, 2022, 383: 55-63. |
54 | Maier M C, Valotta A, Hiebler K, et al. 3D printed reactors for synthesis of active pharmaceutical ingredients in continuous flow[J]. Organic Process Research & Development, 2020, 24(10): 2197-2207. |
55 | Zhang H M, Kopfmüller T, Achermann R, et al. Accessing multidimensional mixing via 3D printing and showerhead micromixer design[J]. AIChE Journal, 2020, 66(4): e16873. |
56 | Feng Y R, Zhang H M, Wang J D, et al. Performance evaluation and scale-up behavior of an engineered in-line mixer for 3D printing[J]. Industrial & Engineering Chemistry Research, 2021, 60(30): 11568-11578. |
57 | Zhang H M, Ładosz A, Jensen K F. Design and operation of an enhanced pervaporation device with static mixers[J]. AIChE Journal, 2022, 68(2): e17455. |
58 | Feng Y R, Mu H F, Liu X, et al. Leveraging 3D printing for the design of high-performance Venturi microbubble generators[J]. Industrial & Engineering Chemistry Research, 2020, 59(17): 8447-8455. |
59 | Feng Y R, Wang J, Zhang H M, et al. A 3D-printed continuous flow platform for the synthesis of methylaluminoxane[J]. Green Chemistry, 2021, 23(11): 4087-4094. |
60 | Zhang M B, Feng Y R, Lou L J, et al. Flow toolkit for measuring reaction enthalpy and application to highly exothermic synthesis of alkylaluminoxanes[J]. Organic Process Research & Development, 2022, 26(5): 1506-1513. |
61 | Pédeutour J-N, Radhakrishnan K, Cramail H, et al. Reactivity of metallocene catalysts for olefin polymerization: influence of activator nature and structure[J]. Macromolecular Rapid Communications, 2001, 22(14): 1095-1123. |
62 | Kissin Y V, Brandolini A J. An alternative route to methylalumoxane: synthesis, structure, and the use of model methylalumoxanes as cocatalysts for transition metal complexes in polymerization reactions[J]. Macromolecules, 2003, 36(1): 18-26. |
63 | Kaminsky W, Strubel C. Hydrogen transfer reactions of supported metallocene catalysts[J]. Journal of Molecular Catalysis A-Chemical, 1998, 128(1/2/3): 191-200. |
64 | Kaminsky W, Bark A, Steiger R. Stereospecific polymerization by metallocene aluminoxane catalysts[J]. Journal of Molecular Catalysis, 1992, 74(1/2/3): 109-119. |
65 | Chen E Y, Marks T J. Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and structure-activity relationships[J]. Chemical Reviews, 2000, 100(4): 1391-1434. |
66 | Velthoen M E Z, Boereboom J M, Bulo R E, et al. Insights into the activation of silica-supported metallocene olefin polymerization catalysts by methylaluminoxane[J]. Catalysis Today, 2019, 334: 223-230. |
67 | Baier M C, Zuideveld M A, Mecking S. Post-metallocenes in the industrial production of polyolefins[J]. Angewandte Chemie International Edition, 2014, 53(37): 9722-9744. |
68 | Stellbrink J, Niu A, Allgaier J, et al. Analysis of polymeric methylaluminoxane (MAO) via small angle neutron scattering[J]. Macromolecules, 2007, 40(14): 4972-4981. |
69 | Feng Y R, Zhang M B, Zhang H M, et al. Continuous synthesis of isobutylaluminoxanes in a compact and integrated approach[J]. Chemical Engineering Journal, 2021, 425: 131750. |
70 | Bravaya N M, Panin A N, Faingol'd E E, et al. Isobutylalumoxanes as high-performance activators of rac-Et(2-MeInd)2ZrMe2 in copolymerization of ethylene with propylene and ternary copolymerization of ethylene, propylene, and 5-ethylidene-2-norbornene[J]. Polymer Bulletin, 2015, 73(2): 473-491. |
71 | Zhang M B, Lou L J, Zheng Y T, et al. A two-stage flow strategy for the synthesis of isobutyl-modified methylaluminoxane[J]. Reaction Chemistry & Engineering, 2023, DOI:10.1039/D2RE00595F . |
[1] | Qi WANG, Bin ZHANG, Xiaoxin ZHANG, Hujian WU, Haitao ZHAN, Tao WANG. Synthesis of isoxepac and 2-ethylanthraquinone catalyzed by chloroaluminate-triethylamine ionic liquid/P2O5 [J]. CIESC Journal, 2023, 74(S1): 245-249. |
[2] | Jiali GE, Tuxiang GUAN, Xinmin QIU, Jian WU, Liming SHEN, Ningzhong BAO. Synthesis of FeF3 nanoparticles covered by vertical porous carbon for high performance Li-ion battery cathode [J]. CIESC Journal, 2023, 74(7): 3058-3067. |
[3] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[4] | Yuming TU, Gaoyan SHAO, Jianjie CHEN, Feng LIU, Shichao TIAN, Zhiyong ZHOU, Zhongqi REN. Advances in the design, synthesis and application of calcium-based catalysts [J]. CIESC Journal, 2023, 74(7): 2717-2734. |
[5] | Maolin DONG, Lidong CHEN, Liulian HUANG, Weibing WU, Hongqi DAI, Huiyang BIAN. Research progress in preparation of lignonanocellulose by acid hydrotropes and their functional applications [J]. CIESC Journal, 2023, 74(6): 2281-2295. |
[6] | Tan ZHANG, Guang LIU, Jinping LI, Yuhan SUN. Performance regulation strategies of Ru-based nitrogen reduction electrocatalysts [J]. CIESC Journal, 2023, 74(6): 2264-2280. |
[7] | Hanbing HE, Zhen LIU, Yong CHEN, Xiaofeng WANG, Jing ZENG. Synthesis and slurry control of manganese oxide powder for direct ink writing electrode [J]. CIESC Journal, 2023, 74(5): 2239-2247. |
[8] | Feng WANG, Yu CHEN, Hongyan PEI, Dongdong LIU, Jing ZHANG, Lixin ZHANG. Design, synthesis and anti-fungal activity of 1,2,4-oxadiazole derivatives [J]. CIESC Journal, 2023, 74(3): 1390-1398. |
[9] | Dingping LIU, Aihua CHEN, Xiangyang ZHANG, Wenhao HE, Hai WANG. Study on semi dry hydrolytic denitrification of aluminum ash [J]. CIESC Journal, 2023, 74(3): 1294-1302. |
[10] | Runzhu LIU, Tiantian CHU, Xiaoa ZHANG, Chengzhong WANG, Junying ZHANG. Synthesis and properties of phenylene-containing α,ω-hydroxy-terminated fluorosilicone polymers [J]. CIESC Journal, 2023, 74(3): 1360-1369. |
[11] | Haiou YUAN, Fangjun YE, Shuo ZHANG, Yiqing LUO, Xigang YUAN. Synthesis of heat-integrated distillation sequences with intermediate heat exchangers [J]. CIESC Journal, 2023, 74(2): 796-806. |
[12] | Xianfu CHEN, Dongyu WANG, Yiqun FAN, Weihong XING, Xu QIAO. Research progress of porous ceramic membranes based on 3D printing technologies [J]. CIESC Journal, 2023, 74(1): 105-115. |
[13] | Guojia YU, Dongyu JIN, Zhiyong ZHOU, Fan ZHANG, Zhongqi REN. Advances in the design, synthesis and application of porous liquids [J]. CIESC Journal, 2023, 74(1): 257-275. |
[14] | Qiuhua ZHANG, Manlu LIU, Zheng WANG, Yiming ZHANG, Haijia SU. Biosynthesis of vitamin K2 and functional analysis of the biosynthetic enzymes involved in its menadione moiety [J]. CIESC Journal, 2023, 74(1): 342-354. |
[15] | Xiaobing JU, Xuechun LI, Fang SUN. Effect on dithiosalicylic acid derivative on properties of photocuring materials [J]. CIESC Journal, 2022, 73(9): 4187-4193. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||