CIESC Journal ›› 2023, Vol. 74 ›› Issue (2): 748-755.DOI: 10.11949/0438-1157.20221130
• Catalysis, kinetics and reactors • Previous Articles Next Articles
Yu XIE1(), Min ZHANG2, Weiguo HU2, Yujun WANG1(), Guangsheng LUO1
Received:
2022-08-11
Revised:
2022-11-06
Online:
2023-03-21
Published:
2023-02-05
Contact:
Yujun WANG
谢煜1(), 张民2, 胡卫国2, 王玉军1(), 骆广生1
通讯作者:
王玉军
作者简介:
谢煜(1994—),女,博士研究生,xie-y17@mails.tsinghua.edu.cn
基金资助:
CLC Number:
Yu XIE, Min ZHANG, Weiguo HU, Yujun WANG, Guangsheng LUO. Study on efficient dissolution of D-7-ACA using membrane dispersion microreactor[J]. CIESC Journal, 2023, 74(2): 748-755.
谢煜, 张民, 胡卫国, 王玉军, 骆广生. 利用膜分散微反应器高效溶解D-7-ACA的研究[J]. 化工学报, 2023, 74(2): 748-755.
Add to citation manager EndNote|Ris|BibTeX
1 | Singh S K, Tiwari R P, Jain P. A novel and efficient synthesis of (6R,7R)-7-amino-3-hydroxymethyl cephalosporanic acid: a versatile precursor of cefuroxime acid[J]. Synthetic Communications, 2003, 33(14): 2475-2482. |
2 | Liang D W, Wang Y Q, Wang Y Y. A practical synthesis of deuterium-labeled cefuroxime[J]. Mendeleev Communications, 2015, 25(4): 252-253. |
3 | Hou J P, Poole J W. β-lactam antibiotics: their physicochemical properties and biological activities in relation to structure[J]. Journal of Pharmaceutical Sciences, 1971, 60(4): 503-532. |
4 | Cimarusti, Christopher M. Dependence of β-lactamase stability on substructures within β-lactam antibiotics[J]. Journal of Medicinal Chemistry, 1984, 27(3): 247-253. |
5 | Dimovska-Gavrilovska A, Chaparoski A, Gavrilovski A. The importance of perioperative prophylaxis with cefuroxime or ceftriaxone in the surgical site infections prevention after cranial and spinal neurosurgical procedures[J]. Prilozi, 2017, 38(2): 85-97. |
6 | Hosmann A, Ritscher L C, Burgmann H. Concentrations of cefuroxime in brain tissue of neurointensive care patients[J]. Antimicrobial Agents and Chemotherapy, 2018, 62(2): e02164-17. |
7 | Gertler R, Gruber M, Wiesner G. Pharmacokinetics of cefuroxime in infants and neonates undergoing cardiac surgery[J]. British Journal of Clinical Pharmacology, 2018, 84(9): 2020-2028. |
8 | Skhirtladze‐Dworschak K, Hutschala D, Reining G. Cefuroxime plasma and tissue concentrations in patients undergoing elective cardiac surgery: continuous vs bolus application. A pilot study[J]. British Journal of Clinical Pharmacology, 2019, 85(4): 818-826. |
9 | 曹卫凯. 头孢呋辛酸的合成研究[J]. 化工与医药工程, 2016(2): 35-38. |
Cao W K. Research of synthesis of cefuroxime[J]. Chemical and Pharmaceutical Engineering, 2016(2): 35-38. | |
10 | Yang M, Zhang S, Hu L, et al. Preparing cefuroxime sodium useful for medicine preparation comprises e.. preparing 3-deacetyl-7-aminocephalosporanic acid, adding purified water and 7-aminocephalosporanic acid in a vessel and adding methylene dichloride: 106565748 [P]. 2017-04-19. |
11 | Ceng J, Wang B, Xu W. Preparation of decarbamoyl cefuroxime involves preparing acyl chloride solution using e.. dichloromethane, stirring acyl chloride solution and obtained 3-deacetyl-7-amino-cephalosporanic acid solution, crystallizing, filtering, and drying: 108440568-A [P]. 2018-08-24. |
12 | Deng Y, Pan H, Du C. New synthesis method of 3-deacetyl cefuroxime comprises using materials which are ()-2-methoxyimino-2-(furyl-2-yl) acetic acid ammonium salt acyl chloride and 3-deacetyl cethalosporanic acid: 101289457-A [P]. 2008-10-22. |
13 | Zając M, Jelińska A, Dobrowolski L. Evaluation of stability of cefuroxime axetil in solid state[J]. Journal of Pharmaceutical and Biomedical Analysis, 2003, 32(6): 1181-1187. |
21 | Watts P, Wiles C. Recent advances in synthetic micro reaction technology[J]. Chem Communications, 2007, 5: 443-467. |
22 | Wiles C, Watts P. Recent advances in micro reaction technology[J]. Chem Communications, 2011, 47(23): 6512-6535. |
23 | Porta R, Benaglia M, Puglisi A. Flow chemistry: recent developments in the synthesis of pharmaceutical products[J]. Organic Process Research & Development, 2015, 20(1): 2-25. |
24 | Meng S X, Xue L H, Xie C Y. Enhanced enzymatic reaction by aqueous two-phase systems using parallel-laminar flow in a double Y-branched microfluidic device[J]. Chemical Engineering Journal, 2018, 335: 392-400. |
25 | Miller P W, Long N J, de Mello A J. Rapid formation of amides via carbonylative coupling reactions using a microfluidic device[J]. Chem Communications, 2006, 5: 546-548. |
26 | Yao H, Wang Y, Jing Y. Ultrafast, continuous and shape-controlled preparation of CeO 2 nanostructures: nanorods and nanocubes in a microfluidic system[J]. Industrial & Engineering Chemistry Research, 2018, 57: 7525-7532. |
27 | Kim H, Min K I, Inoue K. Submillisecond organic synthesis: outpacing fries rearrangement through microfluidic rapid mixing[J]. Science, 2016, 352(6286): 691-694. |
28 | Deng Q, Shen R, Zhao Z. The continuous flow synthesis of 2,4,5-trifluorobenzoic acid via sequential Grignard exchange and carboxylation reactions using microreactors[J]. Chemical Engineering Journal, 2015, 262: 1168-1174. |
29 | Kim H, Lee H J, Kim D P. Integrated one-flow synthesis of heterocyclic thioquinazolinones through serial microreactions with two organolithium intermediates[J]. Angewandte Chemie International Edition, 2015, 54(6): 1877-1880. |
30 | Svetlana B, Timothy N, Bert M. From alcohol to 1,2,3-triazole via a multi-step continuous-flow synthesis of a rufinamide precursor[J]. Green Chemistry, 2016, 18: 4947-4953. |
31 | Lee H J, Kim H, Kim D P. From p-xylene to ibuprofen in flow: three‐step synthesis by a unified sequence of chemoselective C—H metalations[J]. Chemistry-A European Journal, 2019, 25(50): 11641-11645. |
14 | Zhao L, Li Q, Cui Y, et al. Thermal kinetic studies on the decompositions of cefuroxime lysine in different atmospheres and heating rates[J]. Journal of Thermal Analysis and Calorimetry, 2011, 108(1): 269-273. |
15 | Roca M, Villegas L, Kortabitarte M L, et al. Effect of heat treatments on stability of β-lactams in milk[J]. Journal of Dairy Science, 2011, 94(3): 1155-1164. |
16 | Zalewski P, Skibiński R, Cielecka-Piontek J. Stability studies of cefpirome sulfate in the solid state: identification of degradation products[J]. Journal of Pharmaceutical and Biomedical Analysis, 2014, 92: 22-25. |
17 | Marianna Z, Beata S. A kinetic study on the mechanism of cefuroxime degradation[J]. Acta Poloniae Pharmaceutica-Drug Research, 1998, 55(2): 111-115. |
18 | Marianna Z, Beata S. Mechanism of ceftriaxone degradation in aqueous solution[J]. Acta Poloniae Pharmaceutica-Drug Research, 1998, 55(1): 35-39. |
19 | Bartolomé V. HPLC and 1H-NMR studies of alkaline hydrolysis of some 7-(oxyiminoacyl) cephalosporins[J]. Cheminform, 1993, 76(8):2789-2802. |
20 | Yoshida J, Kim H, Nagaki A. Green and sustainable chemical synthesis using flow microreactors[J]. ChemSusChem, 2011, 4(3): 331-340. |
[1] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[2] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[3] | Xingyu YANG, You MA, Chunying ZHU, Taotao FU, Youguang MA. Study on liquid-liquid distribution in comb parallel microchannels [J]. CIESC Journal, 2023, 74(2): 698-706. |
[4] | Jiawei FU, Shuaishuai CHEN, Kailun FANG, Xin JIANG. Advantage of microreactor on the synthesis of high-activity Cu-Mn catalyst by co-precipitation [J]. CIESC Journal, 2023, 74(2): 776-783. |
[5] | Chenghao ZHANG, Jing LUO, Jisong ZHANG. Advances in continuous aerobic oxidation based on nitroxyl radical catalyst in microreactors [J]. CIESC Journal, 2023, 74(2): 511-524. |
[6] | Renjie GU, Jiawei ZHANG, Xueyang JIN, Lixiong WEN. Synthesis of nickel-cobalt hydroxide composites as supercapacitor materials by micro-impinging stream reactors and their performance study [J]. CIESC Journal, 2022, 73(8): 3749-3757. |
[7] | Yuehui HOU, Xuan LIU, Yingjiang LIAN, Mei HAN, Chaoqun YAO, Guangwen CHEN. Synthesis process of trinitrophloroglucinol in an ultrasonic microreactor [J]. CIESC Journal, 2022, 73(8): 3597-3607. |
[8] | Jingwei ZHANG, Yiwei ZHOU, Zhuo CHEN, Jianhong XU. Advances in frontiers of organic synthesis in microreactor [J]. CIESC Journal, 2022, 73(8): 3472-3482. |
[9] | Feishi XU, Lixia YANG, Guangwen CHEN. Mesoscale enhancement mechanism of gas-liquid mass transfer in ultrasonic microreactor [J]. CIESC Journal, 2022, 73(6): 2552-2562. |
[10] | Yifei WANG, Qingqiang WANG, Desheng JI, Shenfang LI, Nan JIN, Yuchao ZHAO. Effects of the wall wettability of microchannel on the gas-liquid two-phase flow hydrodynamics [J]. CIESC Journal, 2022, 73(4): 1501-1514. |
[11] | Yiming XU, Hua YUAN, Suli LIU, Ping LI, Peirong YAN, Xi ZHAO, Junhua LU, Wei ZHAO, Xuelan ZHANG. Study on the continuous synthesis process of industrial mixed linear alkyl benzene sulfonates in a microchannel reactor [J]. CIESC Journal, 2022, 73(3): 1184-1193. |
[12] | Shuaiwei GU, Wei ZHANG, Zhen CHEN, Haiming WANG, Changfu YOU. Dissolution reactivity and kinetic model of low-grade limestone [J]. CIESC Journal, 2022, 73(12): 5547-5554. |
[13] | Liang XIANG, Zihao ZHONG, Yuanhai SU. Advances on continuous synthesis of topological polymers in microreactors [J]. CIESC Journal, 2022, 73(12): 5275-5288. |
[14] | Kailun FANG, Shuaishuai CHEN, Jiawei FU, Xin JIANG. Effect of aging process on copper manganese composite catalyst [J]. CIESC Journal, 2022, 73(10): 4438-4447. |
[15] | Yongli MA, Mingyan LIU, Chen LI, Zongding HU. Research progress of liquid-solid and gas-liquid-solid mini- or micro-fluidizations [J]. CIESC Journal, 2022, 73(1): 46-58. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||