CIESC Journal ›› 2022, Vol. 73 ›› Issue (12): 5547-5554.DOI: 10.11949/0438-1157.20220864
• Energy and environmental engineering • Previous Articles Next Articles
Shuaiwei GU1(), Wei ZHANG1(), Zhen CHEN1, Haiming WANG1, Changfu YOU1,2
Received:
2022-06-21
Revised:
2022-11-10
Online:
2023-01-17
Published:
2022-12-05
Contact:
Wei ZHANG
顾帅威1(), 张纬1(), 陈阵1, 王海名1, 由长福1,2
通讯作者:
张纬
作者简介:
顾帅威(1994—),男,博士研究生,gusw19@mails.tsinghua.edu.cn
基金资助:
CLC Number:
Shuaiwei GU, Wei ZHANG, Zhen CHEN, Haiming WANG, Changfu YOU. Dissolution reactivity and kinetic model of low-grade limestone[J]. CIESC Journal, 2022, 73(12): 5547-5554.
顾帅威, 张纬, 陈阵, 王海名, 由长福. 低品位石灰石溶解特性及动力学模型[J]. 化工学报, 2022, 73(12): 5547-5554.
Add to citation manager EndNote|Ris|BibTeX
元素 | 含量/%(质量) |
---|---|
Ca | 34.44 |
Mg | 3.5 |
Si | 0.522 |
Al | 0.133 |
Na | 0.0858 |
Fe | 0.0726 |
Table 1 Chemical components of low-grade limestone
元素 | 含量/%(质量) |
---|---|
Ca | 34.44 |
Mg | 3.5 |
Si | 0.522 |
Al | 0.133 |
Na | 0.0858 |
Fe | 0.0726 |
实验 | 温度T/℃ | pH | 粒径dp/μm |
---|---|---|---|
1 | 30 | 5.0 | 14.592 |
2 | 40 | 5.0 | 14.592 |
3 | 50 | 5.0 | 14.592 |
4 | 60 | 5.0 | 14.592 |
5 | 50 | 4.5 | 23.182 |
6 | 50 | 5.5 | 23.182 |
7 | 50 | 6.0 | 23.182 |
8 | 50 | 5.0 | 23.182 |
9 | 50 | 5.0 | 44.301 |
10 | 50 | 5.0 | 71.719 |
Table 2 Experimental conditions of low-grade limestone dissolution
实验 | 温度T/℃ | pH | 粒径dp/μm |
---|---|---|---|
1 | 30 | 5.0 | 14.592 |
2 | 40 | 5.0 | 14.592 |
3 | 50 | 5.0 | 14.592 |
4 | 60 | 5.0 | 14.592 |
5 | 50 | 4.5 | 23.182 |
6 | 50 | 5.5 | 23.182 |
7 | 50 | 6.0 | 23.182 |
8 | 50 | 5.0 | 23.182 |
9 | 50 | 5.0 | 44.301 |
10 | 50 | 5.0 | 71.719 |
温度T/℃ | 溶解速率常数k/min-1 |
---|---|
30 | 0.001714 |
40 | 0.002679 |
50 | 0.003528 |
60 | 0.004532 |
Table 3 Dissolution rate constants of low-grade limestone at different temperatures
温度T/℃ | 溶解速率常数k/min-1 |
---|---|
30 | 0.001714 |
40 | 0.002679 |
50 | 0.003528 |
60 | 0.004532 |
粒径dp/μm | 溶解速率常数k/min-1 |
---|---|
14.592 | 0.003528 |
23.182 | 0.002296 |
44.301 | 0.001176 |
71.719 | 0.0004885 |
Table 4 Dissolution rate constants of low-grade limestone with different particle sizes
粒径dp/μm | 溶解速率常数k/min-1 |
---|---|
14.592 | 0.003528 |
23.182 | 0.002296 |
44.301 | 0.001176 |
71.719 | 0.0004885 |
pH | H+浓度cA/(mol/L) | 溶解速率常数k/min-1 |
---|---|---|
4.5 | 10-4.5 | 0.003700 |
5.0 | 10-5.0 | 0.002296 |
5.5 | 10-5.5 | 0.001116 |
6.0 | 10-6.0 | 0.0004514 |
Table 5 Dissolution rate constants of low-grade limestones under different pH conditions
pH | H+浓度cA/(mol/L) | 溶解速率常数k/min-1 |
---|---|---|
4.5 | 10-4.5 | 0.003700 |
5.0 | 10-5.0 | 0.002296 |
5.5 | 10-5.5 | 0.001116 |
6.0 | 10-6.0 | 0.0004514 |
1 | 金涌, 周禹成, 胡山鹰. 低碳理念指导的煤化工产业发展探讨[J]. 化工学报, 2012, 63(1): 3-8. |
Jin Y, Zhou Y C, Hu S Y. Discussion on development of coal chemical industry using low-carbon concept[J]. CIESC Journal, 2012, 63(1): 3-8. | |
2 | 史晓斐, 杨思宇, 钱宇. 化学链技术在煤炭清洁高效利用中的研究进展[J]. 化工学报, 2018, 69(12): 4931-4946. |
Shi X F, Yang S Y, Qian Y. Chemical looping technology for clean and highly efficient coal processes[J]. CIESC Journal, 2018, 69(12): 4931-4946. | |
3 | Ma L W, Allwood J M, Cullen J M, et al. The use of energy in China: tracing the flow of energy from primary source to demand drivers [J]. Energy, 2012, 40(1): 174-188. |
4 | Chen Z, You C F, Wang H M, et al. Experimental study on the synergetic removal of fine particles by wet flue gas desulfurization tower with a flow pattern control device[J]. Powder Technology, 2019, 343: 122-128. |
5 | Chen Z, Wang H M, Zhuo J K, et al. Experimental and numerical study on effects of deflectors on flow field distribution and desulfurization efficiency in spray towers[J]. Fuel Processing Technology, 2017, 162: 1-12. |
6 | 曲江源, 齐娜娜, 关彦军, 等. 湿法烟气脱硫塔内传递与化学反应过程CFD模拟[J]. 化工学报, 2019, 70(6): 2117-2128. |
Qu J Y, Qi N N, Guan Y J, et al. CFD simulation of transfer and chemical reaction process in wet flue gas desulfurization tower[J]. CIESC Journal, 2019, 70(6): 2117-2128. | |
7 | Cui L, Lu J W, Song X D, et al. Energy conservation and efficiency improvement by coupling wet flue gas desulfurization with condensation desulfurization[J]. Fuel, 2021, 285: 119209. |
8 | Gao H L, Li C T, Zeng G M, et al. Experimental study of wet flue gas desulphurization with a novel type PCF device[J]. Chemical Engineering and Processing: Process Intensification, 2011, 50(2): 189-195. |
9 | Li R, Li Q, Sun X Y, et al. Efficient and rapid removal of EDTA-chelated P b ( Ⅱ ) by the F e ( Ⅲ ) /flue gas desulfurization gypsum (FGDG) system[J]. Journal of Colloid and Interface Science, 2019, 542: 379-386. |
10 | Córdoba P. Status of flue gas desulphurisation (FGD) systems from coal-fired power plants: overview of the physic-chemical control processes of wet limestone FGDs[J]. Fuel, 2015, 144: 274-286. |
11 | Zhao Z Y, Zhang Y X, Gao W C, et al. Simulation of SO2 absorption and performance enhancement of wet flue gas desulfurization system[J]. Process Safety and Environmental Protection, 2021, 150: 453-463. |
12 | Liu C, Zhao Z Y, Gao W C, et al. Process optimization of S(Ⅳ) oxidation in flue gas desulfurization scrubbers[J]. Process Safety and Environmental Protection, 2021, 149: 610-618. |
13 | Altun N E. Assessment of marble waste utilization as an alternative sorbent to limestone for SO2 control[J]. Fuel Processing Technology, 2014, 128: 461-470. |
14 | Lim J, Jeong S, Kim J. Deep neural network-based optimal selection and blending ratio of waste seashells as an alternative to high-grade limestone depletion for SO X capture and utilization[J]. Chemical Engineering Journal, 2022, 431:133244. |
15 | Lim J, Choi Y, Kim G, et al. Modeling of the wet flue gas desulfurization system to utilize low-grade limestone[J]. Korean Journal of Chemical Engineering, 2020, 37(12): 2085-2093. |
16 | 孙彬. 微生物作用下镁离子影响矿化产物机制研究[D]. 山东科技大学, 2020. |
Sun B. Research on the mechanism of magnesium ion affecting mineralization products under the action of microorganisms[D]. Qingdao: Shandong University of Science and Technology, 2020. | |
17 | Zhao M X, Zou C J. An investigation into the influence of dissolution rate on flue gas desulfurization by limestone slurry[J]. Separation and Purification Technology, 2021, 276:119356. |
18 | Guelli U Souza S M A, Santos F B F, Ulson de Souza A A, et al. Limestone dissolution in flue gas desulfurization-experimental and numerical study[J]. Journal of Chemical Technology & Biotechnology, 2010, 85(9): 1208-1214. |
19 | Pepe F. Dissolution of finely ground limestone particles in acidic solutions[J]. Industry & Engineering Chemistry Research, 2001, 40(23): 5378-5385. |
20 | Siagi Z O, Mbarawa M. Dissolution rate of South African calcium-based materials at constant pH[J]. Journal of Hazardous Materials, 2009, 163(2/3): 678-682. |
21 | Ukawa N, Takashina T, Shinoda N, et al. Effects of particle size distribution on limestone dissolution in wet FGD process applications[J]. Environmental Progress, 1993, 12(3): 238-242. |
22 | 吕丽娜. 基于石灰石-石膏湿法烟气脱硫技术的脱硫添加剂研究[D]. 上海: 华东理工大学, 2016. |
Lyu L N. Research on desulfurization additives based on the limestone-gypsum wet flue gas desulfurization technology[D]. Shanghai: East China University of Science and Technology, 2016. | |
23 | Tang L W, Dong S Q, Arnold R, et al. Atomic dislocations and bond rupture govern dissolution enhancement under acoustic stimulation[J]. ACS Applied Materials & Interfaces, 2020, 12(49): 55399-55410. |
24 | Wei Z S, Hsiao Y H, Chen X, et al. Isothermal stimulation of mineral dissolution processes by acoustic perturbation[J]. The Journal of Physical Chemistry C, 2018, 122(50): 28665-28673. |
25 | Muravyov M I, Fomchenko N V, Usoltsev A V, et al. Leaching of copper and zinc from copper converter slag flotation tailings using H2SO4 and biologically generated Fe2(SO4)3 [J]. Hydrometallurgy, 2012, 119/120: 40-46. |
26 | Carletti C, de Blasio C, Miceli, M, et al. Ultrasonic enhanced limestone dissolution: experimental and mathematical modeling[J]. Chemical Engineering and Processing: Process Intensification, 2017, 118: 26-36. |
27 | Gao X, Guo R T, Ding H L, et al. Dissolution rate of limestone for wet flue gas desulfurization in the presence of sulfite[J]. Journal of Hazardous Materials, 2009, 168(2/3): 1059-1064. |
28 | Xiao W H, Liu X H, Zhao Z W. Kinetics of nickel leaching from low-nickel matte in sulfuric acid solution under atmospheric pressure[J]. Hydrometallurgy, 2020, 194: 105353. |
29 | Islas H, Flores M U, Reyes I A, et al. Determination of the dissolution rate of hazardous jarosites in different conditions using the shrinking core kinetic model[J]. Journal of Hazardous Materials, 2020, 386: 121664. |
30 | Hosseini T, Selomulya C, Haque N, et al. Indirect carbonation of victorian brown coal fly ash for CO2 sequestration: multiple-cycle leaching-carbonation and magnesium leaching kinetic modeling[J]. Energy & Fuels, 2014, 28(10): 6481-6493. |
[1] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[2] | Cheng CHENG, Zhongdi DUAN, Haoran SUN, Haitao HU, Hongxiang XUE. Lattice Boltzmann simulation of surface microstructure effect on crystallization fouling [J]. CIESC Journal, 2023, 74(S1): 74-86. |
[3] | Ruimin CHE, Wenqiu ZHENG, Xiaoyu WANG, Xin LI, Feng XU. Research progress on homogeneous processing of cellulose in ionic liquids [J]. CIESC Journal, 2023, 74(9): 3615-3627. |
[4] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[5] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
[6] | Mengmeng ZHANG, Dong YAN, Yongfeng SHEN, Wencui LI. Effect of electrolyte types on the storage behaviors of anions and cations for dual-ion batteries [J]. CIESC Journal, 2023, 74(7): 3116-3126. |
[7] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[8] | Jipeng ZHOU, Wenjun HE, Tao LI. Reaction engineering calculation of deactivation kinetics for ethylene catalytic oxidation over irregular-shaped catalysts [J]. CIESC Journal, 2023, 74(6): 2416-2426. |
[9] | Guangyu WANG, Kai ZHANG, Kaihua ZHANG, Dongke ZHANG. Heat and mass transfer and energy consumption for microwave drying of coal slime [J]. CIESC Journal, 2023, 74(6): 2382-2390. |
[10] | Yanhui LI, Shaoming DING, Zhouyang BAI, Yinan ZHANG, Zhihong YU, Limei XING, Pengfei GAO, Yongzhen WANG. Corrosion micro-nano scale kinetics model development and application in non-conventional supercritical boilers [J]. CIESC Journal, 2023, 74(6): 2436-2446. |
[11] | Chengze WANG, Kaili GU, Jinhua ZHANG, Jianxuan SHI, Yiwei LIU, Jinxiang LI. Sulfidation couples with aging to enhance the reactivity of zerovalent iron toward Cr(Ⅵ) in water [J]. CIESC Journal, 2023, 74(5): 2197-2206. |
[12] | Quanbi ZHANG, Yijin YANG, Xujing GUO. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process [J]. CIESC Journal, 2023, 74(5): 2217-2227. |
[13] | Zhen LONG, Jinhang WANG, Yong HE, Deqing LIANG. Characteristics study on hydrates formation from gas mixture under ionic liquid together with kinetic hydrate inhibitors [J]. CIESC Journal, 2023, 74(4): 1703-1711. |
[14] | Simin YI, Yali MA, Weiqiang LIU, Jinshuai ZHANG, Yan YUE, Qiang ZHENG, Songyan JIA, Xue LI. Study on ammonia evaporation and hydration kinetics of microcrystalline magnesite [J]. CIESC Journal, 2023, 74(4): 1578-1586. |
[15] | Jiajing BAO, Hongfei BIE, Ziwei WANG, Rui XIAO, Dong LIU, Shiliang WU. The effects of adding long-chain ethers in n-heptane counterflow diffusion flames on the formation characteristics of soot precursors [J]. CIESC Journal, 2023, 74(4): 1680-1692. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||