CIESC Journal ›› 2022, Vol. 73 ›› Issue (4): 1501-1514.DOI: 10.11949/0438-1157.20211786
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yifei WANG(),Qingqiang WANG,Desheng JI,Shenfang LI,Nan JIN,Yuchao ZHAO()
Received:
2021-12-20
Revised:
2022-03-08
Online:
2022-04-25
Published:
2022-04-05
Contact:
Yuchao ZHAO
通讯作者:
赵玉潮
作者简介:
王宜飞(1997—),男,硕士研究生,基金资助:
CLC Number:
Yifei WANG, Qingqiang WANG, Desheng JI, Shenfang LI, Nan JIN, Yuchao ZHAO. Effects of the wall wettability of microchannel on the gas-liquid two-phase flow hydrodynamics[J]. CIESC Journal, 2022, 73(4): 1501-1514.
王宜飞, 王清强, 姬德生, 李申芳, 金楠, 赵玉潮. 微通道壁面浸润性对气-液两相流的影响规律研究[J]. 化工学报, 2022, 73(4): 1501-1514.
Add to citation manager EndNote|Ris|BibTeX
Fig.7 Formation process characteristics of gas-liquid slug flow at jG= jL =0.116 m/s(The flow direction is from right to left. The microchannel width was 0.6 mm as a scale bar)
Fig.9 Annular flow characteristics at jG=1.389 m/s, jL=0.463 m/s(The flow direction is from right to left. The microchannel width was 0.6 mm as a scale bar)
Fig.10 Parallel flow characteristics at jG=3.704 m/s, jL=0.023 m/s(The flow direction is from right to left. The microchannel width was 0.6 mm as a scale bar)
Fig.11 Churning flow characteristics at jG=2.315 m/s, jL=1.389 m/s(The flow direction is from right to left. The microchannel width was 0.6 mm as a scale bar)
Fig.12 Bubbly flow characteristics at jG=0.231 m/s, jL=0.926 m/s(The flow direction is from right to left. The microchannel width was 0.6 mm as a scale bar)
1 | 陈光文, 袁权. 微化工技术[J]. 化工学报, 2003, 54(4): 427-439. |
Chen G W, Yuan Q. Micro-chemical technology[J]. Journal of Chemical Industry and Engineering (China), 2003, 54(4): 427-439. | |
2 | Wang K, Luo G S. Microflow extraction: a review of recent development[J]. Chemical Engineering Science, 2017, 169: 18-33. |
3 | Fu T T, Ma Y G, Funfschilling D, et al. Squeezing-to-dripping transition for bubble formation in a microfluidic T-junction[J]. Chemical Engineering Science, 2010, 65(12): 3739-3748. |
4 | Zhou Y F, Yao C Q, Zhang P, et al. Dynamic coupling of mass transfer and chemical reaction for Taylor flow along a serpentine microchannel[J]. Industrial & Engineering Chemistry Research, 2020, 59(19): 9279-9292. |
5 | Zhang P, Yao C Q, Ma H Y, et al. Dynamic changes in gas-liquid mass transfer during Taylor flow in long serpentine square microchannels[J]. Chemical Engineering Science, 2018, 182: 17-27. |
6 | Yao C Q, Zhao Y C, Ma H Y, et al. Two-phase flow and mass transfer in microchannels: a review from local mechanism to global models[J]. Chemical Engineering Science, 2021, 229: 116017. |
7 | Elvira K S, Solvas X C i, Wootton R C R, et al. The past, present and potential for microfluidic reactor technology in chemical synthesis[J]. Nature Chemistry, 2013, 5(11): 905-915. |
8 | Zhao C X, Middelberg A P J. Two-phase microfluidic flows[J]. Chemical Engineering Science, 2011, 66(7): 1394-1411. |
9 | Zhao Y C, Su Y H, Chen G W, et al. Effect of surface properties on the flow characteristics and mass transfer performance in microchannels[J]. Chemical Engineering Science, 2010, 65(5): 1563-1570. |
10 | Squires T M, Quake S R. Microfluidics: fluid physics at the nanoliter scale[J]. Reviews of Modern Physics, 2005, 77(3): 977-1026. |
11 | Santos R M, Kawaji M. Developments on wetting effects in microfluidic slug flow[J]. Chemical Engineering Communications, 2012, 199(12): 1626-1641. |
12 | Zhou Y L, Chang H, Qi T Y. Gas-liquid two-phase flow in serpentine microchannel with different wall wettability[J]. Chinese Journal of Chemical Engineering, 2017, 25(7): 874-881. |
13 | Barajas A M, Panton R L. The effects of contact angle on two-phase flow in capillary tubes[J]. International Journal of Multiphase Flow, 1993, 19(2): 337-346. |
14 | Wielhorski Y, Ben Abdelwahed M A, Bizet L, et al. Wetting effect on bubble shapes formed in a cylindrical T-junction[J]. Chemical Engineering Science, 2012, 84: 100-106. |
15 | Garstecki P, Fuerstman M J, Stone H A, et al. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up[J]. Lab on a Chip, 2006, 6(3): 437-446. |
16 | Xu J H, Luo G S, Li S W, et al. Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties[J]. Lab on a Chip, 2006, 6(1): 131-136. |
17 | Ma Y G, Fu T T, Zhu C Y, et al. Formation mechanism and size prediction of bubble in opposite-flowing T-shaped microchannel[J]. Transactions of Tianjin University, 2010, 16(4): 251-255. |
18 | 孙俊杰, 郝婷婷, 马学虎, 等. 壁面润湿性对微通道内二氧化碳-水两相流流动及传质性能的影响[J]. 化工学报, 2015, 66(9): 3405-3412. |
Sun J J, Hao T T, Ma X H, et al. Surface wettability effect on carbon dioxide-water two-phase flow and mass transfer in rectangular microchannel[J]. CIESC Journal, 2015, 66(9): 3405-3412. | |
19 | Cubaud T, Ulmanella U, Ho C M. Two-phase flow in microchannels with surface modifications[J]. Fluid Dynamics Research, 2006, 38(11): 772-786. |
20 | Choi C, Yu D I, Kim M. Surface wettability effect on flow pattern and pressure drop in adiabatic two-phase flows in rectangular microchannels with T-junction mixer[J]. Experimental Thermal and Fluid Science, 2011, 35(6): 1086-1096. |
21 | Sairiam S, Loh C H, Wang R, et al. Surface modification of PVDF hollow fiber membrane to enhance hydrophobicity using organosilanes[J]. Journal of Applied Polymer Science, 2013, 130(1): 610-621. |
22 | Hong Y, You X Q, Zeng Y, et al. Air-plasma surface modification of epoxy resin substrate to improve electroless copper plating of printed circuit board[J]. Vacuum, 2019, 170: 108967. |
23 | Shi T N, Shao M L, Zhang H R, et al. Surface modification of porous poly(tetrafluoroethylene) film via cold plasma treatment[J]. Applied Surface Science, 2011, 258(4): 1474-1479. |
24 | Pykönen M, Sundqvist H, Järnström J, et al. Effects of atmospheric plasma activation on surface properties of pigment-coated and surface-sized papers[J]. Applied Surface Science, 2008, 255(5): 3217-3229. |
25 | Li M S, Zhao Z P, Wang M X. Controllable modification of polymer membranes by LDDLT plasma flow: membrane module scale-up and hydrophilic stability[J]. Chemical Engineering Science, 2015, 122: 53-63. |
26 | 梁邦. 基于两性离子聚合物超亲水表面的制备及应用研究[D]. 合肥: 中国科学技术大学, 2019. |
Liang B. The preparation of superhydrophilic surface based on the zwitterionic polymer and its application[D]. Hefei: University of Science and Technology of China, 2019. | |
27 | Wang C G, Yong H W, Goto A. Effective synthesis of patterned polymer brushes with tailored multiple graft densities[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14478-14484. |
28 | Wang Y X, Deng J P, Zhong W B, et al. Facile surface superhydrophilic modification: NVP/MBA inverse microemulsion surface-grafting polymerization initiated by UV light[J]. Macromolecular Rapid Communications, 2005, 26(22): 1788-1793. |
29 | Saxena S, Ray A R, Mindemart J, et al. Plasma-induced graft polymerization of acrylic acid onto poly(propylene) monofilament: characterization[J]. Plasma Processes and Polymers, 2010, 7(7): 610-618. |
30 | Yao C Q, Dong Z Y, Zhang Y C, et al. On the leakage flow around gas bubbles in slug flow in a microchannel[J]. AIChE Journal, 2015, 61(11): 3964-3972. |
31 | Hoang D A, Portela L M, Kleijn C R, et al. Dynamics of droplet breakup in a T-junction[J]. Journal of Fluid Mechanics, 2013, 717: R4. |
32 | 丛振霞, 朱春英, 付涛涛, 等. Y型分岔微通道内气泡的破裂动力学[J]. 中国科学: 化学, 2015, 45(1): 34-41. |
Cong Z X, Zhu C Y, Fu T T, et al. Dynamics of bubble breakup in a microfluidic Y-bifurcation[J]. Scientia Sinica Chimica, 2015, 45(1): 34-41. | |
33 | Xu J H, Li S W, Tan J, et al. Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping[J]. Microfluidics and Nanofluidics, 2008, 5(6): 711-717. |
34 | Yao C Q, Zhao Y C, Ye C B, et al. Characteristics of slug flow with inertial effects in a rectangular microchannel[J]. Chemical Engineering Science, 2013, 95: 246-256. |
35 | Fuerstman M J, Lai A, Thurlow M E, et al. The pressure drop along rectangular microchannels containing bubbles[J]. Lab on a Chip, 2007, 7(11): 1479-1489. |
36 | 齐红媛. 液体管道内壁润湿性及流动特性研究[D]. 成都: 西南石油大学, 2017. |
Qi H Y. Study on inner wall wettability and flow property in liquid pipe[D]. Chengdu: Southwest Petroleum University, 2017. | |
37 | Bretherton F P. The motion of long bubbles in tubes[J]. Journal of Fluid Mechanics, 1961, 10(2): 166-188. |
38 | Wong H, Radke C J, Morris S. The motion of long bubbles in polygonal capillaries(Part 1): Thin films[J]. Journal of Fluid Mechanics, 1995, 292: 71-94. |
39 | Wong H, Radke C J, Morris S. The motion of long bubbles in polygonal capillaries(Part 2): Drag, fluid pressure and fluid flow[J]. Journal of Fluid Mechanics, 1995, 292: 95-110. |
40 | Lee C Y. An experimental study on effect of surface wettability on two-phase flow pattern and pressure drop in round mini-channels[D]. Korea :Korea Advanced Institute of Science and Technology, 2009. |
41 | Blake T D. The physics of moving wetting lines[J]. Journal of Colloid and Interface Science, 2006, 299(1): 1-13. |
42 | Rapolu P, Son S Y. Characterization of wettability effects on pressure drop of two-phase flow in microchannel[J]. Experiments in Fluids, 2011, 51(4): 1101-1108. |
[1] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[2] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[3] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[4] | Qichao LIU, Yunlong ZHOU, Cong CHEN. Analysis and calculation of void fraction of gas-liquid two-phase flow in vertical riser under fluctuating vibration [J]. CIESC Journal, 2023, 74(6): 2391-2403. |
[5] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[6] | Xueting ZHANG, Jijiang HU, Jing ZHAO, Bogeng LI. Preparation of high molecular weight polypropylene glycol in microchannel reactor [J]. CIESC Journal, 2023, 74(3): 1343-1351. |
[7] | Chenghao ZHANG, Jing LUO, Jisong ZHANG. Advances in continuous aerobic oxidation based on nitroxyl radical catalyst in microreactors [J]. CIESC Journal, 2023, 74(2): 511-524. |
[8] | Yu XIE, Min ZHANG, Weiguo HU, Yujun WANG, Guangsheng LUO. Study on efficient dissolution of D-7-ACA using membrane dispersion microreactor [J]. CIESC Journal, 2023, 74(2): 748-755. |
[9] | Xingyu YANG, You MA, Chunying ZHU, Taotao FU, Youguang MA. Study on liquid-liquid distribution in comb parallel microchannels [J]. CIESC Journal, 2023, 74(2): 698-706. |
[10] | Xingyu XIANG, Zhongdong WANG, Yanpeng DONG, Shouchuan LI, Chunying ZHU, Youguang MA, Taotao FU. Progress on rheological properties and multiphase flow of yield stress fluids in microchannels [J]. CIESC Journal, 2023, 74(2): 546-558. |
[11] | Jiawei FU, Shuaishuai CHEN, Kailun FANG, Xin JIANG. Advantage of microreactor on the synthesis of high-activity Cu-Mn catalyst by co-precipitation [J]. CIESC Journal, 2023, 74(2): 776-783. |
[12] | Wanyuan HE, Yiyu CHEN, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Study on gas-liquid mass transfer characteristics in microchannel with array bulges [J]. CIESC Journal, 2023, 74(2): 690-697. |
[13] | Lin SHENG, Yu CHANG, Jian DENG, Guangsheng LUO. Formation and flow characteristics of ordered bubble swarm in a step T-junction microchannel [J]. CIESC Journal, 2023, 74(1): 416-427. |
[14] | Qiaoling SU, Junfeng WANG, Wei ZHANG, Shuiqing ZHAN, Tianyi WU. Experimental study on polarization motion characteristics of bubbles in a low conductivity working medium [J]. CIESC Journal, 2022, 73(9): 3861-3869. |
[15] | Tong ZHANG, Yang YANG, Dingding YE, Rong CHEN, Xun ZHU, Qiang LIAO. Effect of catalyst distribution on the performance characteristics of microfluidic fuel cell with flow-through anode [J]. CIESC Journal, 2022, 73(9): 4156-4162. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||