CIESC Journal ›› 2022, Vol. 73 ›› Issue (6): 2552-2562.DOI: 10.11949/0438-1157.20220087
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Feishi XU(),Lixia YANG,Guangwen CHEN()
Received:
2022-01-17
Revised:
2022-02-11
Online:
2022-06-30
Published:
2022-06-05
Contact:
Guangwen CHEN
通讯作者:
陈光文
作者简介:
许非石(1990—),男,博士后,基金资助:
CLC Number:
Feishi XU, Lixia YANG, Guangwen CHEN. Mesoscale enhancement mechanism of gas-liquid mass transfer in ultrasonic microreactor[J]. CIESC Journal, 2022, 73(6): 2552-2562.
许非石, 杨丽霞, 陈光文. 超声微反应器内气液传质过程的介尺度强化机制[J]. 化工学报, 2022, 73(6): 2552-2562.
Add to citation manager EndNote|Ris|BibTeX
参数 | 液相 | 气相 |
---|---|---|
水 | 二氧化碳 | |
密度ρ/(kg/m3) | 998.2 | 1.7878 |
黏度 μ/(mPa·s) | 1.003 | 0.0137 |
摩尔质量 /(kg/mol) | 18.0152 | 44.00995 |
表面张力系数σ/(N/m) | 0.072 | |
饱和浓度 /(kg/m3) | — | 1.688 |
液相扩散系数 /(m2/s) | — | 2×10-9 |
Table 1 Physical parameters used in this study
参数 | 液相 | 气相 |
---|---|---|
水 | 二氧化碳 | |
密度ρ/(kg/m3) | 998.2 | 1.7878 |
黏度 μ/(mPa·s) | 1.003 | 0.0137 |
摩尔质量 /(kg/mol) | 18.0152 | 44.00995 |
表面张力系数σ/(N/m) | 0.072 | |
饱和浓度 /(kg/m3) | — | 1.688 |
液相扩散系数 /(m2/s) | — | 2×10-9 |
项目 | 轴向3000 μm | 径向 | 总数 | ||||||
---|---|---|---|---|---|---|---|---|---|
中心区域200 μm | 过渡区域45 μm | 壁面区域5 μm | |||||||
尺寸/μm | 数量 | 尺寸/μm | 数量 | 尺寸/μm | 数量 | 尺寸/μm | 数量 | ||
Mesh 1 | 20 | 150 | 20 | 10 | 10~1.34 | 9 | 1 | 5 | 7200 |
Mesh 2 | 10 | 300 | 10 | 20 | 10~1.34 | 9 | 1 | 5 | 20400 |
Mesh 3 | 5 | 600 | 5 | 40 | 4.8~1.3 | 16 | 1 | 5 | 73200 |
Mesh 4 | 2.5 | 1200 | 2.5 | 80 | 2.5~1.2 | 25 | 1 | 5 | 264000 |
Table 2 Size and distribution of mesh cells for mesh independency test
项目 | 轴向3000 μm | 径向 | 总数 | ||||||
---|---|---|---|---|---|---|---|---|---|
中心区域200 μm | 过渡区域45 μm | 壁面区域5 μm | |||||||
尺寸/μm | 数量 | 尺寸/μm | 数量 | 尺寸/μm | 数量 | 尺寸/μm | 数量 | ||
Mesh 1 | 20 | 150 | 20 | 10 | 10~1.34 | 9 | 1 | 5 | 7200 |
Mesh 2 | 10 | 300 | 10 | 20 | 10~1.34 | 9 | 1 | 5 | 20400 |
Mesh 3 | 5 | 600 | 5 | 40 | 4.8~1.3 | 16 | 1 | 5 | 73200 |
Mesh 4 | 2.5 | 1200 | 2.5 | 80 | 2.5~1.2 | 25 | 1 | 5 | 264000 |
1 | 李静海, 胡英, 袁权. 探索介尺度科学: 从新角度审视老问题[J]. 中国科学: 化学, 2014, 44(3): 277-281. |
Li J H, Hu Y, Yuan Q. Mesoscience: exploring old problems from a new angle[J]. Scientia Sinica Chimica, 2014, 44(3): 277-281. | |
2 | Huang W L, Li J H, Edwards P P. Mesoscience: exploring the common principle at mesoscales[J]. National Science Review, 2017, 5(3): 321-326. |
3 | Yao C Q, Zhao Y C, Ma H Y, et al. Two-phase flow and mass transfer in microchannels: a review from local mechanism to global models[J]. Chemical Engineering Science, 2021, 229: 116017. |
4 | Jensen K F. Microreaction engineering—is small better? [J]. Chemical Engineering Science, 2001, 56(2): 293-303. |
5 | Dong Z Y, Delacour C, Mc Carogher K, et al. Continuous ultrasonic reactors: design, mechanism and application[J]. Materials, 2020, 13(2): 344. |
6 | Friend J, Yeo L Y. Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics[J]. Reviews of Modern Physics, 2011, 83(2): 647-704. |
7 | Zhao S N, Yao C Q, Dong Z Y, et al. Role of ultrasonic oscillation in chemical processes in microreactors: a mesoscale issue[J]. Particuology, 2020, 48: 88-99. |
8 | Butler C, Cid E, Billet A M. Modelling of mass transfer in Taylor flow: investigation with the PLIF-I technique[J]. Chemical Engineering Research and Design, 2016, 115: 292-302. |
9 | Xu F S, Hébrard G, Dietrich N. Comparison of three different techniques for gas-liquid mass transfer visualization[J]. International Journal of Heat and Mass Transfer, 2020, 150: 119261. |
10 | Yang L X, Loubière K, Dietrich N, et al. Local investigations on the gas-liquid mass transfer around Taylor bubbles flowing in a meandering millimetric square channel[J]. Chemical Engineering Science, 2017, 165: 192-203. |
11 | Hagsäter S M, Jensen T G, Bruus H, et al. Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations[J]. Lab on a Chip, 2007, 7(10): 1336-1344. |
12 | Xu F S, Jimenez M, Dietrich N, et al. Fast determination of gas-liquid diffusion coefficient by an innovative double approach[J]. Chemical Engineering Science, 2017, 170: 68-76. |
13 | 王炳捷, 李辉, 杨晓勇, 等. CFD数值模拟技术在液滴微流控多相流特性研究的应用进展[J]. 化工进展, 2021, 40(4): 1715-1735. |
Wang B J, Li H, Yang X Y, et al. Application process of CFD-numerical simulation technology for multiphase flow characteristics study in droplet-microfluidic systems[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1715-1735. | |
14 | Wörner M. Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications[J]. Microfluidics and Nanofluidics, 2012, 12(6): 841-886. |
15 | Hoang D A, van Steijn V, Portela L M, et al. Benchmark numerical simulations of segmented two-phase flows in microchannels using the Volume of Fluid method[J]. Computers & Fluids, 2013, 86: 28-36. |
16 | 尧超群, 陈光文, 袁权. 微通道内气-液两相传质过程行为及其应用[J]. 化工学报, 2019, 70(10): 3635-3644. |
Yao C Q, Chen G W, Yuan Q. Mass transfer characteristics of gas-liquid two-phase flow in microchannels and applications[J]. CIESC Journal, 2019, 70(10): 3635-3644. | |
17 | Yao C Q, Liu Y Y, Xu C, et al. Formation of liquid-liquid slug flow in a microfluidic T-junction: effects of fluid properties and leakage flow[J]. AIChE Journal, 2018, 64(1): 346-357. |
18 | Talimi V, Muzychka Y S, Kocabiyik S. A review on numerical studies of slug flow hydrodynamics and heat transfer in microtubes and microchannels[J]. International Journal of Multiphase Flow, 2012, 39: 88-104. |
19 | Dong Z Y, Yao C Q, Zhang Y C, et al. Hydrodynamics and mass transfer of oscillating gas-liquid flow in ultrasonic microreactors[J]. AIChE Journal, 2016, 62(4): 1294-1307. |
20 | Zhang Q, Dong Z Y, Zhao S N, et al. Ultrasound-assisted gas-liquid mass transfer process in microreactors: the influence of surfactant, channel size and ultrasound frequency[J]. Chemical Engineering Journal, 2021, 405: 126720. |
21 | Xu F S, Yang L X, Liu Z K, et al. Numerical investigation on the hydrodynamics of Taylor flow in ultrasonically oscillating microreactors[J]. Chemical Engineering Science, 2021, 235: 116477. |
22 | Yang L X, Xu F S, Chen G W. Enhancement of gas-liquid mass transfer and mixing in zigzag microreactor under ultrasonic oscillation[J]. Chemical Engineering Science, 2022, 247: 117094. |
23 | Yang L X, Xu F S, Zhang Q, et al. Gas-liquid hydrodynamics and mass transfer in microreactors under ultrasonic oscillation[J]. Chemical Engineering Journal, 2020, 397: 125411. |
24 | Butler C, Cid E, Billet A M, et al. Numerical simulation of mass transfer dynamics in Taylor flows[J]. International Journal of Heat and Mass Transfer, 2021, 179: 121670. |
25 | Yang L, Nieves-Remacha M J, Jensen K F. Simulations and analysis of multiphase transport and reaction in segmented flow microreactors[J]. Chemical Engineering Science, 2017, 169: 106-116. |
26 | Silva M F, Campos J B L M, Miranda J M, et al. Numerical study of single Taylor bubble movement through a microchannel using different CFD packages[J]. Processes, 2020, 8(11): 1418. |
27 | Özkan F, Wenka A, Hansjosten E, et al. Numerical investigation of interfacial mass transfer in two phase flows using the VOF method[J]. Engineering Applications of Computational Fluid Mechanics, 2016, 10(1): 100-110. |
28 | Soh G Y, Yeoh G H, Timchenko V. A CFD model for the coupling of multiphase, multicomponent and mass transfer physics for micro-scale simulations[J]. International Journal of Heat and Mass Transfer, 2017, 113: 922-934. |
29 | Gupta R, Fletcher D F, Haynes B S. On the CFD modelling of Taylor flow in microchannels[J]. Chemical Engineering Science, 2009, 64(12): 2941-2950. |
30 | Aussillous P, Quéré D. Quick deposition of a fluid on the wall of a tube[J]. Physics of Fluids, 2000, 12(10): 2367-2371. |
31 | Maksimov A, Leighton T, Birkin P. Acoustic microstreaming induced by pattern of Faraday waves on a bubble wall[J]. The Journal of the Acoustical Society of America, 2012, 131(4): 3338. |
32 | Yao C Q, Dong Z Y, Zhang Y C, et al. On the leakage flow around gas bubbles in slug flow in a microchannel[J]. AIChE Journal, 2015, 61(11): 3964-3972. |
33 | Higbie R. The rate of absorption of a pure gas into a still liquid during short periods of exposure[J]. Transactions of the AIChE, 1935, 31: 365-389. |
34 | Figueroa-Espinoza B, Legendre D. Mass or heat transfer from spheroidal gas bubbles rising through a stationary liquid[J]. Chemical Engineering Science, 2010, 65(23): 6296-6309. |
[1] | Jingwei CHAO, Jiaxing XU, Tingxian LI. Investigation on the heating performance of the tube-free-evaporation based sorption thermal battery [J]. CIESC Journal, 2023, 74(S1): 302-310. |
[2] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[3] | Keke SHAO, Mengjie SONG, Zhengyong JIANG, Xuan ZHANG, Long ZHANG, Runmiao GAO, Zekang ZHEN. Experimental study on the formation and distribution of trapped air bubbles in horizontal ice slice [J]. CIESC Journal, 2023, 74(S1): 161-164. |
[4] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[5] | Jiaqi YUAN, Zheng LIU, Rui HUANG, Lefu ZHANG, Denghui HE. Investigation on energy conversion characteristics of vortex pump under bubble inflow [J]. CIESC Journal, 2023, 74(9): 3807-3820. |
[6] | Yitong LI, Hang GUO, Hao CHEN, Fang YE. Study on operating conditions of proton exchange membrane fuel cells with non-uniform catalyst distributions [J]. CIESC Journal, 2023, 74(9): 3831-3840. |
[7] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[8] | Linjing YUE, Yihan LIAO, Yuan XUE, Xuejie LI, Yuxing LI, Cuiwei LIU. Study on influence of pit defects on cavitation flow characteristics of throat of thick orifice plates [J]. CIESC Journal, 2023, 74(8): 3292-3308. |
[9] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
[10] | Yuanyuan ZHANG, Jiangyuan QU, Xinxin SU, Jing YANG, Kai ZHANG. Gas-liquid mass transfer and reaction characteristics of SNCR denitration in CFB coal-fired unit [J]. CIESC Journal, 2023, 74(6): 2404-2415. |
[11] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
[12] | Hao WANG, Siyang TANG, Shan ZHONG, Bin LIANG. An investigation of the enhancing effect of solid particle surface on the CO2 desorption behavior in chemical sorption process with MEA solution [J]. CIESC Journal, 2023, 74(4): 1539-1548. |
[13] | Yinning ZHANG, Jinqing WANG, Zhi FENG, Mingxiu ZHAN, Xu XU, Guangxue ZHANG, Zuohe CHI. Growth and coalescence behavior of bubbles in porous media under heating condition [J]. CIESC Journal, 2023, 74(4): 1509-1518. |
[14] | Lufan JIA, Yiying WANG, Yuman DONG, Qinyuan LI, Xin XIE, Hao YUAN, Tao MENG. Aqueous two-phase system based adherent droplet microfluidics for enhanced enzymatic reaction [J]. CIESC Journal, 2023, 74(3): 1239-1246. |
[15] | Xueting ZHANG, Jijiang HU, Jing ZHAO, Bogeng LI. Preparation of high molecular weight polypropylene glycol in microchannel reactor [J]. CIESC Journal, 2023, 74(3): 1343-1351. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||