CIESC Journal ›› 2023, Vol. 74 ›› Issue (5): 1847-1861.DOI: 10.11949/0438-1157.20230075
• Reviews and monographs • Previous Articles Next Articles
Xiaoyu YAO1(), Jun SHEN1(), Jian LI1, Zhenxing LI1, Huifang KANG1, Bo TANG2,3,4, Xueqiang DONG2,3,4(), Maoqiong GONG2,3,4
Received:
2023-02-03
Revised:
2023-04-10
Online:
2023-06-29
Published:
2023-05-05
Contact:
Jun SHEN, Xueqiang DONG
姚晓宇1(), 沈俊1(), 李健1, 李振兴1, 康慧芳1, 唐博2,3,4, 董学强2,3,4(), 公茂琼2,3,4
通讯作者:
沈俊,董学强
作者简介:
姚晓宇(1995—),男,博士后,yaoxiaoyu22@bit.edu.cn
基金资助:
CLC Number:
Xiaoyu YAO, Jun SHEN, Jian LI, Zhenxing LI, Huifang KANG, Bo TANG, Xueqiang DONG, Maoqiong GONG. Research progress in measurement methods in vapor-liquid critical properties of mixtures[J]. CIESC Journal, 2023, 74(5): 1847-1861.
姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861.
Add to citation manager EndNote|Ris|BibTeX
Fig.2 Schematic diagram of the variable-volume method apparatus (Burrnet expansion method)[59]A—optical cell; B—variable-volume vessel; C—differential null-pressure detector; D—aluminum blocks; E—constant-temperature oil bath; F—impeller; G—temperature controller; H—platinum resistance thermometer; I—cold trap; J—quartz crystal pressure gauge; V1—cutoff valve; V2—separation valve
Fig.3 Schematic diagram of the variable-volume apparatus (metal-bellows method)[60-61]A—metal-bellows in pressure vessel; B—optical cell; C—thermostatic oil bath; D—platinum resistance thermometer; E1—heater (1.2 kW); E2—heater (0.3 kW); F—stirrer
Fig.4 Schematic diagram of the variable-volume apparatus (metal-bellows method) from the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences[62]1—silicone oil bath; 2—metal-bellow volumeter; 3—platinum resistance thermometers; 4—refrigerator; 5—trirrer; 6—motor; 7—vacuum pump; 8—electronic balance; 9—gas cylinder; 10—pressure transducers; 11—pressure and temperature indicator; 12—bridge; 13—stabilized voltage supply; 14—equilibrium cell; 15—view windows; 16—electrical heater
Fig.5 Schematic diagram of the variable-volume method apparatus (piston method) from Tianjin University[65]1—screw-driven pump; 2—pressure meter; 3—hall probe; 4—heat jacket; 5—autoclave; 6—position; 7—O-ring; 8—stirrer; 9—quartz window; 10—sampling valves; 11—pressure sensor; 12—thermocouple; 13—small steel vessel; 14—thermometer; 15—vacuum meter; 16—steel bulb
Fig.6 Schematic diagram of the variable-volume method apparatus (piston method) from University of Science and Technology of China[65]1—sample cylinder A; 2—sample cylinder B; 3-6—valves; 7—vacuum pump; 8—optical cell; 9—pressure transducer; 10—platinum resistance thermometer; 11—stirrer; 12—heater; 13—data acquisition instrument; 14—temperature controller; 15—computer; 16—gas chromatograph
Fig.7 Schematic diagram of the flow method apparatus[67]PS—pressurized source; VPr—volumetric press; SP—syringe pump; VP—vacuum pump; HE—heat exchanger; VC—view cell; AT—air thermostat bath (oven); TP—platinum resistance temperature probe; PT—pressure transducer; TR—temperature regulator; FV—flow regulation valve; DAS—data acquisition system; CPU—central processor unit; V—valve
Fig.8 Schematic diagram of the pulse-heating method apparatus[68]1—thermocouple; 2—ceramic thermal insulator; 3—furnace; 4—measuring probe; 5—liquid under study; 6—body; 7—flange; 8—confining liquid
Fig.10 A schematic diagram of the deviation between the critical density measured by rectilinear diameter law and the true critical density of fluid[72]
Fig.12 Schematic diagram of the quasi-static thermograms method[39]1—piezometer; 2—air thermostat; 3—differential membrane separator; 4—valve; 5,8—platinum resistance thermometer; 6—digital micro-ohmmeter; 7—digital high precision temperature controller; 9—regulating heater; 10—fan; 11,12—platinum sensitive element; 13—multichannel analog-to-digital converter; 14-16—differential thermocouples; 17—digital voltmeter; 18—dead-weight pressure gauge; 19—capillary; 20—micro amperemeter
Fig.13 Schematic diagram of the acoustic method apparatus[79]A—amplifier; C—acoustic cell; HP—hand pump; HPB—high-pressure bomb; O—oscilloscope; P—pressure transducer; PG—pulse generator; R—acoustic receiver; S—acoustic sender; T—thermocouple
测量方法 | 测量范围 | 测量精度 | 优点 | 缺点 |
---|---|---|---|---|
定容法 | 热稳定物质 | 较高 | 简单、可靠 | 主观性判定临界点,实验效率低 |
变容法 | 热稳定物质 | 较高 | 实验效率高 | 主观性判定临界点,系统复杂度高,需精密测量或计算体积 |
流动法 | 热不稳定物质 | 较高 | 能测量热不稳定物质 | 主观性判定临界点,不能测量临界密度,需确保流体均匀混合和流动 |
脉冲加热法 | 热不稳定物质 | 较低 | 能测量易受热分解物质 | 主观性判定临界点,不能测量临界密度,需确保流体均匀混合和流动,系统复杂度高 |
密度直线中径定律法 | 热稳定物质 | 较低 | 简单,能以气相和液相饱和 密度数据拟合临界参数 | 近临界区数据受主观性观测影响大,拟合精度低,密度中径是否符合直线规律存在争议 |
压力-体积-温度 (p-V-T)关系法 | 热稳定物质 | 较低 | 拟合精度高 | 需要拟合数据较多,效率低 |
准静态热分析法 | 热稳定物质 | 较高 | 判断临界点准确客观,能同时 测量近临界区比定容热容 | 实验效率低 |
物理性质法 | 热不稳定物质 | 较低 | 判断临界点客观 | 发展不成熟,测量精度低 |
Table 1 Summary of measurement methods for critical p-ρ-T-x parameters
测量方法 | 测量范围 | 测量精度 | 优点 | 缺点 |
---|---|---|---|---|
定容法 | 热稳定物质 | 较高 | 简单、可靠 | 主观性判定临界点,实验效率低 |
变容法 | 热稳定物质 | 较高 | 实验效率高 | 主观性判定临界点,系统复杂度高,需精密测量或计算体积 |
流动法 | 热不稳定物质 | 较高 | 能测量热不稳定物质 | 主观性判定临界点,不能测量临界密度,需确保流体均匀混合和流动 |
脉冲加热法 | 热不稳定物质 | 较低 | 能测量易受热分解物质 | 主观性判定临界点,不能测量临界密度,需确保流体均匀混合和流动,系统复杂度高 |
密度直线中径定律法 | 热稳定物质 | 较低 | 简单,能以气相和液相饱和 密度数据拟合临界参数 | 近临界区数据受主观性观测影响大,拟合精度低,密度中径是否符合直线规律存在争议 |
压力-体积-温度 (p-V-T)关系法 | 热稳定物质 | 较低 | 拟合精度高 | 需要拟合数据较多,效率低 |
准静态热分析法 | 热稳定物质 | 较高 | 判断临界点准确客观,能同时 测量近临界区比定容热容 | 实验效率低 |
物理性质法 | 热不稳定物质 | 较低 | 判断临界点客观 | 发展不成熟,测量精度低 |
测量方法 | 研究机构 | 国家 | 标准不确定度 |
---|---|---|---|
定容法 | 奥尔登堡大学 [ | 德国 | 10 kPa (pc)、0.1 K (Tc)、2% (ρc)、 0.0005 (x) |
定容法 | 卡尔斯鲁厄大学 [ | 德国 | 6 kPa (pc)、 0.06 K (Tc)、 2% (ρc)、 0.003 (x) |
定容法 | 华东理工大学 [ | 中国 | 30 kPa (pc)、 0.3 K (Tc)、 N/A (ρc)、 0.003 (x) |
定容法 | 清华大学 [ | 中国 | 0.5 kPa (pc)、 0.01 K (Tc)、 0.7% (ρc)、 N/A (x) |
定容法 | 马来亚大学 [ | 马来西亚 | 50 kPa (pc)、 0.2 K (Tc)、 N/A (ρc)、 0.015 (x) |
定容法/直线法 | 达吉斯坦州立大学/俄罗斯科学院高温联合研究所[ | 俄罗斯 | 0.05% (pc)、 0.015 K (Tc)、 0.15% (ρc)、 N/A (x) |
定容法/直线法 | 西安现代化学研究所 [ | 中国 | 24 kPa (pc)、 0.21 K (Tc)、 6.4 kg/m3 (ρc)、 0.0009 (x) |
定容法/流体p-V-T关系法 | 俄罗斯科学院油气研究所 [ | 俄罗斯 | 70 kPa (pc)、 2 K (Tc)、 N/A (ρc)、 0.015 (x) 1.8 kPa (p)、 0.05 K (T)、 0.0003 cm3/g (V)、 0.25 (x) |
变容法/流体p-V-T关系法 | 九州大学 [59,41] | 日本 | 0.5 kPa (pc)、 0.01 K (Tc)、 0.15% (ρc)、 0.005 (x) |
变容法 | 庆应义塾大学 [61,60] | 日本 | 1.6 kPa (pc)、 0.016 K (Tc)、 0.18% (ρc)、 0.009 (x) |
变容法 | 中国科学技术大学 [ | 中国 | 3.1 kPa (pc)、 0.01 K (Tc)、 0.0015 (x) |
变容法 | 丽水国立大学 [ | 韩国 | 30 kPa (pc)、 0.1 K (Tc)、 0.001 (x) |
变容法 | 天津大学 [ | 中国 | 100 kPa (pc)、 0.1 K (Tc)、 N/A (ρc)、 N/A (x) |
变容法 | 中国科学院理化技术研究所[ | 中国 | 10.5 kPa (pc)、 0.025 K (Tc)、 0.3% (ρc)、 0.005 (x) |
流动法 | 洛林大学 [ | 法国 | 8 kPa (pc)、 0.05 K (Tc)、 0.000015 (x) |
流动法 | 西安交通大学 [ | 中国 | 5.2 kPa (pc)、 0.2 K (Tc)、 0.006 (x) |
流动法/流体p-V-T关系法 | 萨拉格萨大学 [ | 西班牙 | 34 kPa (pc)、 0.32 K (Tc)、 0.1% (ρc)、 0.005 (x) |
脉冲加热法 | 俄罗斯科学院乌拉尔分院 [ | 俄罗斯 | 80 kPa (pc)、 0.1 K (Tc)、 N/A (x) |
准静态热分析法 | 达吉斯坦州立大学/俄罗斯科学院高温联合研究所 [ | 俄罗斯 | 0.025% (pc)、 0.075 K (Tc)、 0.25% (ρc)、 0.00005 (x) |
声学法 | 诺丁汉大学 [ | 英国 | 10 kPa (pc)、 0.1 K (Tc)、 N/A (ρc)、 N/A (x) |
Table 2 Active research institutions of critical p-ρ-T-x parameters measurement in recent 30 years and their measurement principles
测量方法 | 研究机构 | 国家 | 标准不确定度 |
---|---|---|---|
定容法 | 奥尔登堡大学 [ | 德国 | 10 kPa (pc)、0.1 K (Tc)、2% (ρc)、 0.0005 (x) |
定容法 | 卡尔斯鲁厄大学 [ | 德国 | 6 kPa (pc)、 0.06 K (Tc)、 2% (ρc)、 0.003 (x) |
定容法 | 华东理工大学 [ | 中国 | 30 kPa (pc)、 0.3 K (Tc)、 N/A (ρc)、 0.003 (x) |
定容法 | 清华大学 [ | 中国 | 0.5 kPa (pc)、 0.01 K (Tc)、 0.7% (ρc)、 N/A (x) |
定容法 | 马来亚大学 [ | 马来西亚 | 50 kPa (pc)、 0.2 K (Tc)、 N/A (ρc)、 0.015 (x) |
定容法/直线法 | 达吉斯坦州立大学/俄罗斯科学院高温联合研究所[ | 俄罗斯 | 0.05% (pc)、 0.015 K (Tc)、 0.15% (ρc)、 N/A (x) |
定容法/直线法 | 西安现代化学研究所 [ | 中国 | 24 kPa (pc)、 0.21 K (Tc)、 6.4 kg/m3 (ρc)、 0.0009 (x) |
定容法/流体p-V-T关系法 | 俄罗斯科学院油气研究所 [ | 俄罗斯 | 70 kPa (pc)、 2 K (Tc)、 N/A (ρc)、 0.015 (x) 1.8 kPa (p)、 0.05 K (T)、 0.0003 cm3/g (V)、 0.25 (x) |
变容法/流体p-V-T关系法 | 九州大学 [59,41] | 日本 | 0.5 kPa (pc)、 0.01 K (Tc)、 0.15% (ρc)、 0.005 (x) |
变容法 | 庆应义塾大学 [61,60] | 日本 | 1.6 kPa (pc)、 0.016 K (Tc)、 0.18% (ρc)、 0.009 (x) |
变容法 | 中国科学技术大学 [ | 中国 | 3.1 kPa (pc)、 0.01 K (Tc)、 0.0015 (x) |
变容法 | 丽水国立大学 [ | 韩国 | 30 kPa (pc)、 0.1 K (Tc)、 0.001 (x) |
变容法 | 天津大学 [ | 中国 | 100 kPa (pc)、 0.1 K (Tc)、 N/A (ρc)、 N/A (x) |
变容法 | 中国科学院理化技术研究所[ | 中国 | 10.5 kPa (pc)、 0.025 K (Tc)、 0.3% (ρc)、 0.005 (x) |
流动法 | 洛林大学 [ | 法国 | 8 kPa (pc)、 0.05 K (Tc)、 0.000015 (x) |
流动法 | 西安交通大学 [ | 中国 | 5.2 kPa (pc)、 0.2 K (Tc)、 0.006 (x) |
流动法/流体p-V-T关系法 | 萨拉格萨大学 [ | 西班牙 | 34 kPa (pc)、 0.32 K (Tc)、 0.1% (ρc)、 0.005 (x) |
脉冲加热法 | 俄罗斯科学院乌拉尔分院 [ | 俄罗斯 | 80 kPa (pc)、 0.1 K (Tc)、 N/A (x) |
准静态热分析法 | 达吉斯坦州立大学/俄罗斯科学院高温联合研究所 [ | 俄罗斯 | 0.025% (pc)、 0.075 K (Tc)、 0.25% (ρc)、 0.00005 (x) |
声学法 | 诺丁汉大学 [ | 英国 | 10 kPa (pc)、 0.1 K (Tc)、 N/A (ρc)、 N/A (x) |
1 | White C M, Smith D H, Jones K L, et al. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery-a review[J]. Energy and Fuels, 2005, 19(3): 659-724. |
2 | Queiroz J P S, Bermejo M D, Mato F, et al. Supercritical water oxidation with hydrothermal flame as internal heat source: efficient and clean energy production from waste[J]. The Journal of Supercritical Fluids, 2015, 96: 103-113. |
3 | Rothenfluh T, Schuler M J, Von Rohr P R. Penetration length studies of supercritical water jets submerged in a subcritical water environment using a novel optical Schlieren method[J]. The Journal of Supercritical Fluids, 2011, 57(2): 175-182. |
4 | Menon S K, Boettcher P A, Ventura B, et al. Hot surface ignition of n-hexane in air[J]. Combustion and Flame, 2016, 163: 42-53. |
5 | Kojima J J, Hegde U G, Gotti D J, et al. Flame structure of supercritical ethanol/water combustion in a co-flow air stream characterized by Raman chemical analysis[J]. The Journal of Supercritical Fluids, 2020, 166: 104995. |
6 | Reverchon E, Torino E, Dowy S, et al. Interactions of phase equilibria, jet fluid dynamics and mass transfer during supercritical antisolvent micronization[J]. Chemical Engineering Journal, 2009, 156(2): 446-458. |
7 | Couto R, Chambon S, Aymonier C, et al. Microfluidic supercritical antisolvent continuous processing and direct spray-coating of poly(3-hexylthiophene) nanoparticles for OFET devices[J]. Chemical Communications (Cambridge, England), 2015, 51(6): 1008-1011. |
8 | Wu C, Yan X J, Wang S S, et al. System optimisation and performance analysis of CO2 transcritical power cycle for waste heat recovery[J]. Energy, 2016, 100: 391-400. |
9 | Li M J, Zhu H H, Guo J Q, et al. The development technology and applications of supercritical CO2 power cycle in nuclear energy, solar energy and other energy industries[J]. Applied Thermal Engineering, 2017, 126: 255-275. |
10 | Pan L H, Freifeld B, Doughty C, et al. Fully coupled wellbore-reservoir modeling of geothermal heat extraction using CO2 as the working fluid[J]. Geothermics, 2015, 53: 100-113. |
11 | Hsieh J C, Lin D T W, Wei C H, et al. The heat extraction investigation of supercritical carbon dioxide flow in heated porous media[J]. Energy Procedia, 2014, 61: 262-265. |
12 | Crua C, Manin J, Pickett L M. On the transcritical mixing of fuels at diesel engine conditions[J]. Fuel, 2017, 208: 535-548. |
13 | Falgout Z, Rahm M, Sedarsky D, et al. Gas/fuel jet interfaces under high pressures and temperatures[J]. Fuel, 2016, 168: 14-21. |
14 | Wensing M, Vogel T, Götz G. Transition of diesel spray to a supercritical state under engine conditions[J]. International Journal of Engine Research, 2016, 17(1):108-119. |
15 | Polikhronidi N G, Batyrova R G, Wu J T, et al. Simultaneously measurements of the PVT and thermal-pressure coefficient of benzene in the critical and supercritical regions[J]. Journal of Molecular Liquids, 2019, 293: 111381. |
16 | 吴子睿, 孙瑞, 石凌峰, 等. CO2混合工质的气液相平衡的混合规则对比与预测研究[J]. 化工学报, 2022, 73(4): 1483-1492. |
Wu Z R, Sun R, Shi L F, et al. A comparative and predictive study of the mixing rules for the vapor-liquid equilibria of CO2-based mixtures[J]. CIESC Journal, 2022, 73(4): 1483-1492. | |
17 | Van K P H, Scott R L. Critical lines and phase equilibria in binary van der Waals mixtures[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934—1990), 1980, 298(1442): 495-540. |
18 | Raju M, Banuti D T, Ma P C, et al. Widom lines in binary mixtures of supercritical fluids[J]. Scientific Reports, 2017, 7(1): 1-10. |
19 | Banuti D T. Crossing the Widom-line—supercritical pseudo-boiling[J]. The Journal of Supercritical Fluids, 2015, 98: 12-16. |
20 | Simeoni G G, Bryk T, Gorelli F A, et al. The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids[J]. Nature Physics, 2010, 6(7): 503-507. |
21 | Espinosa J R, Garaizar A, Vega C, et al. Breakdown of the law of rectilinear diameter and related surprises in the liquid-vapor coexistence in systems of patchy particles[J]. The Journal of Chemical Physics, 2019, 150(22):224510. |
22 | Maxim F, Contescu C, Boillat P, et al. Visualization of supercritical water pseudo-boiling at Widom line crossover[J]. Nature Communications, 2019, 10(1): 1-11. |
23 | Straub J, Nitsche K. Isochoric heat capacity Cv at the critical point of SF6 under micro- and earth-gravity[J]. Fluid Phase Equilibria, 1993, 88: 183-208. |
24 | Meyer H, Zhong F. Equilibration and other dynamic properties of fluids near the liquid-vapor critical point[J]. Comptes Rendus Mécanique, 2004, 332(5/6): 327-343. |
25 | Hu Z C, Zhang X R. Piston effect induced by cross-boundary mass diffusion in a binary fluid mixture near its liquid-vapor critical point[J]. International Journal of Heat and Mass Transfer, 2019, 140: 691-704. |
26 | Khmelinskii I, Woodcock L V. Supercritical fluid gaseous and liquid states: a review of experimental results[J]. Entropy (Basel, Switzerland), 2020, 22(4):437. |
27 | Lee S, Lee J, Kim Y, et al. Quasi-equilibrium phase coexistence in single component supercritical fluids[J]. Nature Communications, 2021, 12(1): 1-7. |
28 | Abdulagatov A I, Stepanov G V, Abdulagatov I M. The critical properties of binary mixtures containing carbon dioxide: Krichevskii parameter and related thermodynamic properties[J]. High Temperature, 2007, 45(3): 408-424. |
29 | Jacob J, Kumar A, Anisimov M A, et al. Crossover from Ising to mean-field critical behavior in an aqueous electrolyte solution[J]. Physical Review E-Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1998, 58(2): 2188-2200. |
30 | Berche B, Henkel M, Kenna R. Critical phenomena: 150 years since cagniard de la tour[J]. Journal of Physical Studies, 2009, 13(3):3001. |
31 | Lopez-Echeverry J S, Reif-Acherman S, Araujo-Lopez E. Peng-Robinson equation of state: 40 years through cubics[J]. Fluid Phase Equilibria, 2017, 447: 39-71. |
32 | Sadowski G. Special issue celebrating 30 years of SAFT[J]. Journal of Chemical & Engineering Data, 2020, 65(12): 5627. |
33 | Chou G F, Prausnitz J M. A phenomenological correction to an equation of state for the critical region[J]. AIChE Journal, 1989, 35(9): 1487-1496. |
34 | Kiselev S B, Friend D G. Cubic crossover equation of state for mixtures[J]. Fluid Phase Equilibria, 1999, 162(1/2): 51-82. |
35 | Wilson L C, Jasperson L V, VonNiederhausern D, et al. DIPPR project 851—thirty years of vapor-liquid critical point measurements and experimental technique development[J]. Journal of Chemical & Engineering Data, 2018, 63(9): 3408-3417. |
36 | Chirico R D, Frenkel M, Magee J W, et al. Improvement of quality in publication of experimental thermophysical property data: challenges, assessment tools, global implementation, and online support[J]. Journal of Chemical & Engineering Data, 2013, 58(10): 2699-2716. |
37 | Bell I H, Wronski J, Quoilin S, et al. Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library coolprop[J]. Industrial & Engineering Chemistry Research, 2014, 53(6): 2498-2508. |
38 | Onken U, Rarey-Nies J, Gmehling J. The Dortmund data bank: a computerized system for retrieval, correlation, and prediction of thermodynamic properties of mixtures[J]. International Journal of Thermophysics, 1989, 10(3): 739-747. |
39 | Abdulagatov I M, Bazaev A R, Bazaev E A, et al. Experimental study of the critical and supercritical phenomena in ternary mixture of water+1-propanol+n-hexane[J]. Journal of Molecular Liquids, 2020, 316: 113789. |
40 | Higashi Y, Sakoda N. Measurements of PvT properties, saturated densities, and critical parameters for 3, 3, 3-trifluoropropene (HFO1243zf)[J]. Journal of Chemical & Engineering Data, 2018, 63(10): 3818-3822. |
41 | Sakoda N, Higashi Y. Measurements of PvT properties, vapor pressures, saturated densities, and critical parameters for cis-1-chloro-2,3,3,3-tetrafluoropropene (R1224yd(Z))[J]. Journal of Chemical & Engineering Data, 2019, 64(9): 3983-3987. |
42 | Higashi Y, Tanaka K, Ichikawa T. Critical parameters and saturated densities in the critical region for trans-1, 3, 3, 3-tetrafluoropropene (HFO-1234ze(E))[J]. Journal of Chemical & Engineering Data, 2010, 55(4): 1594-1597. |
43 | Tanaka K, Akasaka R, Sakaue E, et al. Measurements of the critical parameters for cis-1,1,1,4,4,4-hexafluoro-2-butene[J]. Journal of Chemical & Engineering Data, 2017, 62(3): 1135-1138. |
44 | Duan Y Y, Shi L, Zhu M S, et al. Critical parameters and saturated density of trifluoroiodomethane (CF3I)[J]. Journal of Chemical & Engineering Data, 1999, 44(3): 501-504. |
45 | Fu Y D, Han L Z, Zhu M S. PVT properties, vapor pressures and critical parameters of HFC-32[J]. Fluid Phase Equilibria, 1995, 111(2): 273-286. |
46 | Liu X Y, Lan T, Wang C J, et al. Measurement of critical temperature and critical pressure of tert-butanol and alkane mixtures[J]. Journal of Molecular Liquids, 2020, 302: 112582. |
47 | Xin N, Liu Y, Guo X D, et al. Determination of critical properties for binary and ternary mixtures containing propanol and alkanes using a flow view-type apparatus[J]. The Journal of Supercritical Fluids, 2016, 108: 35-44. |
48 | Liu Y, Zhang Y, He M G, et al. Determination of the critical properties of C6-C10 n-alkanes and their binary systems using a flow apparatus[J]. Journal of Chemical & Engineering Data, 2014, 59(11): 3852-3857. |
49 | Lan T, Yao C Q, Liu X Y, et al. Measurements of critical properties of ethyl propionate with the gasoline components[J]. Journal of Molecular Liquids, 2021, 322: 114801. |
50 | Wu J T, Liu Z G, Wang B, et al. Measurement of the critical parameters and the saturation densities of dimethyl ether[J]. Journal of Chemical & Engineering Data, 2004, 49(3): 704-708. |
51 | Vostrikov S V, Pimerzin A A, Konnova M E, et al. Plotting of phase (vapor-liquid) transition surface near the critical point out of data from isochoric experiment. Experimental procedure[J]. Fluid Phase Equilibria, 2018, 462: 118-129. |
52 | Haynes W M. Hand Book of Chemistry and Physics[M]. 97th ed. London: Taylor & Francis Group, 2017: 67-91. |
53 | Bell Ian H, Demian R, Ala B, et al. Survey of data and models for refrigerant mixtures containing halogenated olefins[J]. Journal of Chemical & Engineering Data, 2021, 66(6): 2335-2354. |
54 | Ambrose D, Tsonopoulos C, Nikitin E D, et al. Vapor-liquid critical properties of elements and compounds (12): Review of recent data for hydrocarbons and non-hydrocarbons[J]. Journal of Chemical & Engineering Data, 2015, 60(12): 3444-3482. |
55 | Ambrose D, Young C L. Vapor-liquid critical properties of elements and compounds (1): An introductory survey[J]. Journal of Chemical & Engineering Data, 1995, 40(2): 345-357. |
56 | Bobbo S, Di Nicola G, Zilio C, et al. Low GWP halocarbon refrigerants: a review of thermophysical properties[J]. International Journal of Refrigeration, 2018, 90: 181-201. |
57 | Christian I, Sven H, Andreas G. Vapor pressures and vapor-liquid critical properties of four pentene isomers[J]. Journal of Chemical & Engineering Data, 2017, 62(9): 2837-2841. |
58 | Horstmann S, Fischer K, Gmehling J, et al. Experimental determination of the critical line for (carbon dioxide + ethane) and calculation of various thermodynamic properties for (carbon dioxide + n-alkane) using the PSRK model[J]. The Journal of Chemical Thermodynamics, 2000, 32(4): 451-464. |
59 | Uchida Y, Yasumoto M, Yamada Y, et al. Critical properties of four HFE + HFC binary systems: trifluoromethoxymethane (HFE-143m) + pentafluoroethane (HFC-125), + 1, 1, 1, 2-tetrafluoroethane (HFC-134a), + 1, 1, 1, 2, 3, 3, 3-heptafluoropropane (HFC-227ea), and + 1, 1, 1, 2, 3, 3-hexafluoropropane (HFC-236ea)[J]. Journal of Chemical & Engineering Data, 2004, 49: 1615-1621. |
60 | Sakabe A, Arai D, Miyamoto H, et al. Measurements of the critical parameters for {xNH3+(1-x)H2O} with x=(0.9098, 0.7757, 0.6808)[J]. The Journal of Chemical Thermodynamics, 2008, 40(10): 1527-1530. |
61 | Sato M, Masui G, Uematsu M. Critical parameters for ammonia[J]. The Journal of Chemical Thermodynamics, 2005, 37(9): 931-934. |
62 | Yao X Y, Dong X Q, Zhao Y X, et al. A new apparatus for measurement of the critical p-ρ-T properties based on the variable-volume method[J]. International Journal of Refrigeration, 2022, 136: 220-228. |
63 | Yao X Y, Dong X Q, Zhao Y X, et al. Measurement of critical parameters for the binary mixture of R744 (carbon dioxide) + R1243zf (3,3,3-trifluoropropene)[J]. Journal of Chemical & Engineering Data, 2022, 67(9): 2128-2135. |
64 | Yao X Y, Shen J, Kang H H, et al. Measurement of critical parameters for the binary mixture of R744 (carbon dioxide) + R1234yf (2,3,3,3-tetrafluoropro-1-ene)[J]. The Journal of Chemical Thermodynamics, 2023, 178: 106978. |
65 | 朱虎刚. 高压下单组分流体pVT性质和二元系统相平衡和临界曲线[D]. 天津: 天津大学, 2007: 34. |
Zhu H G. pVT properties of one-component fluid at high pressure and phase equilibrium and critical curve of binary system[D]. Tianjin: Tianjin University, 2007: 34. | |
66 | Zhang N, Hu P, Chen L X, et al. Measurements of critical properties of the binary mixture of 1,1,1-trifluoroethane (HFC-143a) +trans-1,3,3,3-tetrafluoropropene (HFO-1234ze(E))[J]. Journal of Chemical & Engineering Data, 2021, 66(7): 2717-2722. |
67 | Juntarachat N, Valtz A, Coquelet C, et al. Experimental measurements and correlation of vapor-liquid equilibrium and critical data for the CO2+R1234yf and CO2+R1234ze(E) binary mixtures[J]. International Journal of Refrigeration, 2014, 47: 141-152. |
68 | Nikitin E D, Popov A P. Vapor-liquid critical point measurements of fifteen compounds by the pulse-heating method[J]. Fluid Phase Equilibria, 2014, 380: 11-17. |
69 | Cornfeld A B, Carr H Y. Experimental evidence concerning the law of rectilinear diameter[J]. Physical Review Letters, 1972, 29(5): 320. |
70 | Nicoll J F. Critical phenomena of fluids: asymmetric Landau-Ginzburg-Wilson model[J]. Physical Review A, 1981, 24(4): 2203-2220. |
71 | Abdulagatov I M, Levina L N, Zakaryaev Z R, et al. The two-phase specific heat at constant volume of propane in the critical region[J]. Fluid Phase Equilibria, 1997, 127(1/2): 205-236. |
72 | Garrabos Y, Lecoutre C, Marre S, et al. Liquid-vapor rectilinear diameter revisited[J]. Physical Review. E, 2018, 97(2): 020101. |
73 | Young S. The vapor pressures, specific volumes, heat of vaporization, and critical constants of 300 pure organic substances[J]. Proc. Roy. Soc. Dublin NS, 1910, 21: 374. |
74 | Van Poolen L J, Jacobsen R T, Jahangiri M. Comparison of the critical liquid volume fraction to rectilinear-diameter methods for prediction of the critical density of ethylene and oxygen[J]. International Journal of Thermophysics, 1986, 7(3): 513-524. |
75 | Rzoska S J, Kalabiński J, Drozd-Rzoska A. Critical concentration in binary mixtures of limited miscibility[J]. Fluid Phase Equilibria, 2021, 540:112979. |
76 | Duschek W, Kleinrahm R, Wagner W. Measurement and correlation of the (pressure, density, temperature) relation of carbon dioxide (Ⅱ): Saturated-liquid and saturated-vapour densities and the vapour pressure along the entire coexistence curve[J]. The Journal of Chemical Thermodynamics, 1990, 22(9): 841-864. |
77 | Andreas K, Robertson Duncan G, Aguiar Ricardo Ana I, et al. Probing vapor/liquid equilibria of near-critical binary gas mixtures by acoustic measurements[J]. The Journal of Physical Chemistry, 1996, 100(22): 9522-9526. |
78 | Kordikowski A, Robertson D G, Poliakoff M, et al. Acoustic determination of the critical surfaces in the ternary systems CO2 + CH2F2 + CF3CH2F and CO + C2H4 + CH3CHCH2 and in their binary subsystems[J]. Journal of Physical Chemistry B, 1997, 101(30): 5853-5862. |
79 | Ke J, Parrott A J, Sanchez-Vicente Y, et al. New phase equilibrium analyzer for determination of the vapor-liquid equilibrium of carbon dioxide and permanent gas mixtures for carbon capture and storage[J]. The Review of Scientific Instruments, 2014, 85(8): 085110. |
80 | Ke J, King P J, George M W, et al. Method for locating the vapor–liquid critical point of multicomponent fluid mixtures using a shear mode piezoelectric sensor[J]. Analytical Chemistry, 2005, 77(1): 85-92. |
81 | Belyakov M Y, Gorodetskii E E, Kulikov V D, et al. Light-scattering anomaly in the vicinity of liquid-vapor critical point of multicomponent mixtures[J]. Chemical Physics, 2011, 379(1/2/3): 123-127. |
82 | Deng B L, Kanda Y, Chen L, et al. Visualization study of supercritical fluid convection and heat transfer in weightlessness by interferometry: a brief review[J]. Microgravity Science and Technology, 2017, 29(4): 275-295. |
83 | Lemmon E W, Huber M L, Mclinden M O. REFPROP 9.1[DB]. NIST Standard Reference Database, 2013. |
84 | Diefenbacher A, Türk M. Critical properties (pc, Tc, and ρc) and phase equilibria of binary mixtures of CO2, CHF3, CH2F2, and SF6 [J]. Fluid Phase Equilibria, 2001, 182(1/2): 121-131. |
85 | Li J F, Qin Z F, Wang G F, et al. Critical temperatures and pressures of several binary and ternary mixtures concerning the alkylation of 2-methylpropane with 1-butene in the presence of methane or carbon dioxide[J]. Journal of Chemical and Engineering Data, 2007, 52(5): 1736-1740. |
86 | Singh H, Lucien F P, Foster N R. Critical properties for binary mixtures of ethane containing low concentrations of n-alkane[J]. Journal of Chemical & Engineering Data, 2000, 45(1): 131-135. |
87 | Bezgomonova E I, Abdulagatov I M, Stepanov G V. Experimental study of the one-, two-, and three-phase isochoric heat capacities of n-hexane + water mixtures near the lower critical line (Ⅰ): Experimental results[J]. Journal of Molecular Liquids, 2012, 175: 121-134. |
88 | Yang Z Q, Valtz A, Coquelet C, et al. Critical properties and vapor-liquid equilibrium of two near-azeotropic mixtures containing HFOs[J]. International Journal of Refrigeration, 2022, 138:133-147. |
89 | Belyakov M Y, Kulikov V D, Muratov A R, et al. Thermodynamic properties of a model hydrocarbon ternary mixture in the vicinity of critical point: measurements and modeling with crossover equation of state[J]. Fluid Phase Equilibria, 2020, 518: 112630. |
90 | Byun H S, Choi M Y, Lim J S. High-pressure phase behavior and modeling of binary mixtures for alkyl acetate in supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2006, 37(3): 323-332. |
91 | Gil L, Blanco S T, Rivas C, et al. Experimental determination of the critical loci for {n-C6H14 or CO2+ alkan-1-ol} mixtures. Evaluation of their critical and subcritical behavior using PC-SAFT EoS[J]. The Journal of Supercritical Fluids, 2012, 71: 26-44. |
92 | McLinden M O, Brown J S, Brignoli R, et al. Limited options for low-global-warming-potential refrigerants[J]. Nature Communications, 2017, 8(1): 1-9. |
93 | Yang Z, Feng B, Ma H Y, et al. Analysis of lower GWP and flammable alternative refrigerants[J]. International Journal of Refrigeration, 2021, 126: 12-22. |
[1] | Yurong DANG, Chunlan MO, Kerui SHI, Yingcong FANG, Ziyang ZHANG, Zuoshun LI. Comprehensive evaluation model combined with genetic algorithm for the study on the performance of ORC system with zeotropic mixture [J]. CIESC Journal, 2023, 74(5): 1884-1895. |
[2] | Ke CHEN, Li DU, Ying ZENG, Siying REN, Xudong YU. Phase equilibria and calculation of quaternary system LiCl+MgCl2+CaCl2+H2O at 323.2 K [J]. CIESC Journal, 2023, 74(5): 1896-1903. |
[3] | Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041. |
[4] | Wenting CHENG, Jie LI, Li XU, Fangqin CHENG, Guoji LIU. Experiment and prediction for the solubility of AlCl3·6H2O in FeCl3, CaCl2, KCl and KCl-FeCl3 solutions [J]. CIESC Journal, 2023, 74(2): 642-652. |
[5] | Ruyi TANG, Hanqian PAN, Xiajun ZHENG, Guangxin ZHANG, Xingping WANG, Xili CUI, Huabin XING. Structural characterization of Z-type perfluoropolyether [J]. CIESC Journal, 2023, 74(1): 479-486. |
[6] | Songtao YANG, Dongyang LI, Yuqing NIU, Xingang LI, Shaohui KANG, Hong LI, Kaikai YE, Zhiquan ZHOU, Xin GAO. Molecular simulation progress in studying thermodynamic properties and potential functions of fluorides [J]. CIESC Journal, 2022, 73(9): 3828-3840. |
[7] | Jiahui REN, Yu LIU, Chao LIU, Lang LIU, Ying LI. Critical temperature prediction of working fluids using molecular fingerprints and topological indices [J]. CIESC Journal, 2022, 73(4): 1493-1500. |
[8] | Zirui WU, Rui SUN, Lingfeng SHI, Hua TIAN, Xuan WANG, Gequn SHU. A comparative and predictive study of the mixing rules for the vapor-liquid equilibria of CO2-based mixtures [J]. CIESC Journal, 2022, 73(4): 1483-1492. |
[9] | Mingyan LI, Jinlong LI, Changjun PENG, Honglai LIU. The effect of ionic liquids on the vapor-liquid equilibrium of ammonia-water solution by the COSMO-SAC [J]. CIESC Journal, 2022, 73(3): 1044-1053. |
[10] | Huan GAO, Guoliang DING, Faxian ZHOU, Dawei ZHUANG. Research on dynamic separation characteristics of R410A refrigerant with lubricant [J]. CIESC Journal, 2022, 73(3): 1054-1062. |
[11] | Mingze SUN, Ning MA, Haoran LI, Haifeng JIANG, Wenpeng HONG, Xiaojuan NIU. Thermodynamic analysis of Brayton cycle of medium and low temperature supercritical CO2 and its mixed working medium [J]. CIESC Journal, 2022, 73(3): 1379-1388. |
[12] | Huaixu LI, Xiaoyan SUN, Shaohui TAO, Li XIA, Shuguang XIANG. Lumping gasoline with molecular properties and density peak clustering [J]. CIESC Journal, 2022, 73(12): 5449-5460. |
[13] | Chenyang ZHU, Xiangyang LIU, Maogang HE, Guangjin CHEN. Viscosity estimation of fluid mixtures based on Eyring's absolute rate theory [J]. CIESC Journal, 2022, 73(11): 4826-4837. |
[14] | Yahui GAO, Shuqian XIA. Experiment and model for isochoric heat capacity of CO2-hydrocarbon liquid phase mixtures [J]. CIESC Journal, 2022, 73(11): 4838-4849. |
[15] | HE Qifan, WU Minqiang, LI Tingxian, WANG Ruzhu. Preparation and thermophysical properties of octadecane/ OBC/ EG composite shaped phase change material [J]. CIESC Journal, 2021, 72(S1): 539-545. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||