1 |
崔勍焱, 颜超, 张浩彬, 等. 不同天然矿物载体钼基催化剂悬浮床加氢裂化反应性能[J]. 石油学报(石油加工), 2022, 38(1): 29-36.
|
|
Cui Q Y, Yan C, Zhang H B, et al. Catalytic performance of molybdenum based catalysts supported on different natural minerals in slurry-phase hydrocracking[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2022, 38(1): 29-36.
|
2 |
Ma L A, Shen Q S, Li J P, et al. Efficient gas-liquid cyclone device for recycled hydrogen in a hydrogenation unit[J]. Chemical Engineering & Technology, 2014, 37(6): 1072-1078.
|
3 |
崔敏, 韩亚鹏, 杨腾飞, 等. 反应时间对重油悬浮床加氢裂化反应的影响[J]. 石油学报(石油加工), 2020, 36(4): 823-831.
|
|
Cui M, Han Y P, Yang T F, et al. Effect of reaction time on slurry-bed hydrocracking for heavy oils[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(4): 823-831.
|
4 |
Castañeda L C, Muñoz J A D, Ancheyta J. Current situation of emerging technologies for upgrading of heavy oils[J]. Catalysis Today, 2014, 220/221/222: 248-273.
|
5 |
张庆军, 刘文洁, 王鑫, 等. 国外渣油加氢技术研究进展[J]. 化工进展, 2015, 34(8): 2988-3002.
|
|
Zhang Q J, Liu W J, Wang X, et al. Research progress in hydroprocessing technology for imported residuum[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 2988-3002.
|
6 |
王祖纲, 李颖. 加氢裂化技术发展现状及展望[J]. 世界石油工业, 2020, 27(4): 12-21.
|
|
Wang Z G, Li Y. Development and prospect of hydrocracking technology[J]. World Petroleum Industry, 2020, 27(4): 12-21.
|
7 |
王紫玉. 重质油悬浮床加氢工艺研究[J]. 石化技术, 2020, 27(6): 62-63.
|
|
Wang Z Y. Study on the hydrogenation process of heavy oil in suspension bed[J]. Petrochemical Industry Technology, 2020, 27(6): 62-63.
|
8 |
薄守石, 王剑, 白飞, 等. 2种重油悬浮床加氢反应器流体力学特性的比较[J]. 石油学报(石油加工), 2015, 31(6): 1408-1415.
|
|
Bo S S, Wang J, Bai F, et al. Comparison of hydrodynamic characteristics in two heavy oil slurry bed hydrocracking reactors[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2015, 31(6): 1408-1415.
|
9 |
Lim S H, Kwon E H, Go K S, et al. Estimation of the gas hold up and flow regime of a bubble column reactor for the slurry phase hydrocracking of heavy oil[J]. Fuel, 2023, 338: 127190.
|
10 |
黄锟腾, 陈健勇, 陈颖, 等. 气液分离技术的研究现状[J]. 化工学报, 2021, 72(S1): 30-41.
|
|
Huang K T, Chen J Y, Chen Y, et al. Research status of vapor-liquid separation technology[J]. CIESC Journal, 2021, 72(S1): 30-41.
|
11 |
蔡禄, 孙治谦, 朱丽云, 等. 气液旋流分离技术应用研究进展[J]. 石油机械, 2021, 49(1): 102-109.
|
|
Cai L, Sun Z Q, Zhu L Y, et al. Application and research progress of gas-liquid cyclone separation technology[J]. China Petroleum Machinery, 2021, 49(1): 102-109.
|
12 |
Wang G, Yan C Q, Fan G M, et al. Experimental study on a swirl-vane separator for gas-liquid separation[J]. Chemical Engineering Research and Design, 2019, 151: 108-119.
|
13 |
Liu L, Ying B B, Gu H Y, et al. Experimental study on the separation performance of a full-scale SG steam-water separator[J]. Annals of Nuclear Energy, 2020, 141: 107330.
|
14 |
Babaoğlu N U, Parvaz F, Hosseini S H, et al. Influence of the inlet cross-sectional shape on the performance of a multi-inlet gas cyclone[J]. Powder Technology, 2021, 384: 82-99.
|
15 |
Kolla S S, Mohan R S, Shoham O. Swirling flow regimes and gas carry-under in gas-liquid cylindrical cyclone separator in a separated outlet configuration[J]. Journal of Energy Resources Technology, 2021, 143(4): 042304.
|
16 |
Yang Z M, Wang J, Zhang J J, et al. A statistical method for flow pattern and efficiency prediction using pressure drop in a two-stage gas liquid cylindrical cyclone[J]. Journal of Natural Gas Science and Engineering, 2022, 99: 104414.
|
17 |
Wang J R, Ji Z L, Liu Z. Experimental and numerical investigation on the gas-liquid separation performance of a novel vane separator with grooves[J]. Chemical Engineering Research and Design, 2022, 180: 306-317.
|
18 |
Sun Y, Zhu X Q, Huang W Q, et al. Simulation and experimental investigation on gas-liquid two-phase flow separation behaviors in multitube T-junction separator[J]. Flow Measurement and Instrumentation, 2022, 85: 102166.
|
19 |
Anderson K, Zhang X A, Abbasi B. A method to design and optimize axial flow cyclones for gas-liquid separation[J]. Journal of Fluids Engineering, 2021, 143(9): 091402.
|
20 |
Wang Y A, Chen J Y, Yang Y, et al. Experimental and numerical performance study of a downward dual-inlet gas-liquid cylindrical cyclone (GLCC)[J]. Chemical Engineering Science, 2021, 238: 116595.
|
21 |
卢春喜, 魏耀东, 时铭显. 提升管气固旋流组合快分设备: 1511627A[P]. 2005-11-23.
|
|
Lu C X, Wei Y D, Shi M X. Gas-solid cyclone combination fast separation device for lifting pipe: 1511627A[P]. 2005-11-23.
|
22 |
孙凤侠, 卢春喜, 时铭显. 旋流快分器内气相流场的实验与数值模拟研究[J]. 石油大学学报(自然科学版), 2005, 29(3): 106-111.
|
|
Sun F X, Lu C X, Shi M X. Experiment and numerical simulation of gas flow field in new vortex quick separation system[J]. Journal of the University of Petroleum, China, 2005, 29(3): 106-111.
|
23 |
Liu F, Chen J Y, Zhang A Q, et al. Performance and flow behavior of four identical parallel cyclones[J]. Separation and Purification Technology, 2014, 134: 147-157.
|
24 |
Yang S L, Wang S, Luo K, et al. Numerical investigation of the back-mixing and non-uniform characteristics in the three-dimensional full-loop circulating fluidized bed combustor with six parallel cyclones[J]. Applied Thermal Engineering, 2019, 153: 524-535.
|
25 |
周闻, 王康松, 鄂承林, 等. 多旋臂气液旋流分离器压降特性试验[J]. 化工学报, 2019, 70(7): 2564-2573.
|
|
Zhou W, Wang K S, E C L, et al. Multi-spiral gas-liquid vortex separator pressure drop characteristics test[J]. CIESC Journal, 2019, 70(7): 2564-2573.
|
26 |
周闻, 鄂承林, 李永祺, 等. 新型多旋臂气液分离器入口旋流头的预分离特性研究[J]. 化工学报, 2021, 72(9): 4775-4785.
|
|
Zhou W, E C L, Li Y Q, et al. Study on pre-separation characteristics of inlet vortex head in novel gas-liquid vortex separator[J]. CIESC Journal, 2021, 72(9): 4775-4785.
|
27 |
Wei P K, Wang D, Niu P M, et al. A novel centrifugal gas liquid pipe separator for high velocity wet gas separation[J]. International Journal of Multiphase Flow, 2020, 124: 103190.
|
28 |
卢春喜, 徐文清, 魏耀东, 等. 新型紧凑式催化裂化沉降系统的实验研究[J]. 石油学报(石油加工), 2007, 23(6): 6-12.
|
|
Lu C X, Xu W Q, Wei Y D, et al. Experimental studies of a novel compact FCC disengager[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2007, 23(6): 6-12.
|
29 |
胡艳华, 卢春喜, 时铭显. 催化裂化提升管出口紧凑式旋流快分系统[J]. 石油学报(石油加工), 2009, 25(1): 20-25.
|
|
Hu Y H, Lu C X, Shi M X. Optimal structure of compact vortex quick separator at FCC riser outlet[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2009, 25(1): 20-25.
|
30 |
Mikheev N, Saushin I, Goltsman A, et al. Data of numerical simulation and experimental research on the design of a cyclone separator with a high flux density[J]. Data in Brief, 2018, 20: 1836-1843.
|
31 |
Mikheev N, Saushin I, Paereliy A, et al. Cyclone separator for gas-liquid mixture with high flux density[J]. Powder Technology, 2018, 339: 326-333.
|
32 |
Wang L Z, Hu T, Xue G, et al. Experimental study on the entrainment of the liquid film in the annular channel of the vortex separator[J]. Annals of Nuclear Energy, 2022, 179: 109428.
|
33 |
白翔宇, 王建军, 杜明生, 等. 气液逆流接触过程及液滴夹带特性[J]. 高校化学工程学报, 2019, 33(6): 1344-1353.
|
|
Bai X Y, Wang J J, Du M S, et al. Characteristics of gas-liquid countercurrent contact processes and droplet entrainment[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(6): 1344-1353.
|
34 |
戚贵强, 王立新. 多效旋风分离器压降的实验研究[J]. 中国粉体技术, 2010, 16(5): 69-71.
|
|
Qi G Q, Wang L X. Experimental study of pressure drop for multi-effect cyclone separator[J]. China Powder Science and Technology, 2010, 16(5): 69-71.
|
35 |
Zhou W, E C L, Li Z X, et al. Separation characteristics in a novel gas-liquid vortex separator[J]. Industrial & Engineering Chemistry Research, 2020, 59(40): 18115-18125.
|
36 |
Yang J X, Sun G G, Zhan M S. Prediction of the maximum-efficiency inlet velocity in cyclones[J]. Powder Technology, 2015, 286: 124-131.
|