CIESC Journal ›› 2023, Vol. 74 ›› Issue (7): 2967-2978.DOI: 10.11949/0438-1157.20230287
• Process system engineering • Previous Articles Next Articles
Guang WANG(), Fashun SHAN(
), Yucheng QIAN, Jianfang JIAO
Received:
2023-03-24
Revised:
2023-06-21
Online:
2023-08-31
Published:
2023-07-05
Contact:
Fashun SHAN
通讯作者:
单发顺
作者简介:
王光(1986—),男,博士,副教授,guang.wang@ncepu.edu.cn
基金资助:
CLC Number:
Guang WANG, Fashun SHAN, Yucheng QIAN, Jianfang JIAO. Incipient fault detection method for chemical process based on ensemble learning transfer entropy[J]. CIESC Journal, 2023, 74(7): 2967-2978.
王光, 单发顺, 钱禹丞, 焦建芳. 基于集成学习传递熵的化工过程微小故障检测方法[J]. 化工学报, 2023, 74(7): 2967-2978.
指标 | ACC | TPR | FPR | TNR | FNR | Precision | F | 权值 |
---|---|---|---|---|---|---|---|---|
ACC | 1 | 5 | 5 | 5 | 5 | 5 | 3 | 0.412 |
TPR | 1/5 | 1 | 1 | 1 | 1 | 1 | 1/3 | 0.076 |
FPR | 1/5 | 1 | 1 | 1 | 1 | 1 | 1/3 | 0.076 |
TNR | 1/5 | 1 | 1 | 1 | 1 | 1 | 1/3 | 0.076 |
FNR | 1/5 | 1 | 1 | 1 | 1 | 1 | 1/3 | 0.076 |
Precision | 1/5 | 1 | 1 | 1 | 1 | 1 | 1/3 | 0.076 |
F | 1/3 | 3 | 3 | 3 | 3 | 3 | 1 | 0.211 |
Table 1 Pairwise comparison matrix and weights of evaluation index
指标 | ACC | TPR | FPR | TNR | FNR | Precision | F | 权值 |
---|---|---|---|---|---|---|---|---|
ACC | 1 | 5 | 5 | 5 | 5 | 5 | 3 | 0.412 |
TPR | 1/5 | 1 | 1 | 1 | 1 | 1 | 1/3 | 0.076 |
FPR | 1/5 | 1 | 1 | 1 | 1 | 1 | 1/3 | 0.076 |
TNR | 1/5 | 1 | 1 | 1 | 1 | 1 | 1/3 | 0.076 |
FNR | 1/5 | 1 | 1 | 1 | 1 | 1 | 1/3 | 0.076 |
Precision | 1/5 | 1 | 1 | 1 | 1 | 1 | 1/3 | 0.076 |
F | 1/3 | 3 | 3 | 3 | 3 | 3 | 1 | 0.211 |
分档 | 概率单位Z | WRSR | 分档结果② |
---|---|---|---|
>6 | >0.721 | 39、34、29、35 | |
>0.724 | 35、40、31、33 | ||
4~6 | 0.273~0.721 | 28、21、25、27、30、26、32、38、40、36、31、33、20、37 | |
0.274~0.724 | 39、34、24、32、30、37、29、20、36、38、27、23、26、22 | ||
<4 | <0.273 | 22、24、23 | |
<0.274 | 28、25、21 |
Table 2 RSR binning results for parameter B in the numerical example
分档 | 概率单位Z | WRSR | 分档结果② |
---|---|---|---|
>6 | >0.721 | 39、34、29、35 | |
>0.724 | 35、40、31、33 | ||
4~6 | 0.273~0.721 | 28、21、25、27、30、26、32、38、40、36、31、33、20、37 | |
0.274~0.724 | 39、34、24、32、30、37、29、20、36、38、27、23、26、22 | ||
<4 | <0.273 | 22、24、23 | |
<0.274 | 28、25、21 |
故障 | KPCA | KICA | WSLKPCA | WSFKICA | ETEn | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 故障检测率 | 54.0% | 0 | 5.4% | 81.8% | 30.9% | 97.0% | 68.9% | 82.9% | 93.0% | 99.0% |
误报率 | 0.6% | 0 | 0.7% | 0.9% | 9.1% | 4.2% | 3.8% | 2.4% | 0 | 0 | |
DD/min | 57 | ND | ND | 6 | 150 | 10 | 38 | 54 | 9 | 9 | |
2 | 故障检测率 | 60.8% | 0 | 13.8% | 66.4% | 84.4% | 68.3% | 69.9% | 76.0% | 76.7% | 80.6% |
误报率 | 2.0% | 0 | 0.6% | 0.7% | 0.8% | 5.1% | 4.2% | 1.6% | 0 | 0 | |
DD/min | 233 | ND | ND | 219 | 9 | 93 | 37 | 28 | 63 | 45 | |
平均故障检测率 | 57.4% | 0 | 9.6% | 74.1% | 57.7% | 82.7% | 69.4% | 79.5% | 84.9% | 89.8% |
Table 3 The detection performance of the five methods for numerical examples
故障 | KPCA | KICA | WSLKPCA | WSFKICA | ETEn | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 故障检测率 | 54.0% | 0 | 5.4% | 81.8% | 30.9% | 97.0% | 68.9% | 82.9% | 93.0% | 99.0% |
误报率 | 0.6% | 0 | 0.7% | 0.9% | 9.1% | 4.2% | 3.8% | 2.4% | 0 | 0 | |
DD/min | 57 | ND | ND | 6 | 150 | 10 | 38 | 54 | 9 | 9 | |
2 | 故障检测率 | 60.8% | 0 | 13.8% | 66.4% | 84.4% | 68.3% | 69.9% | 76.0% | 76.7% | 80.6% |
误报率 | 2.0% | 0 | 0.6% | 0.7% | 0.8% | 5.1% | 4.2% | 1.6% | 0 | 0 | |
DD/min | 233 | ND | ND | 219 | 9 | 93 | 37 | 28 | 63 | 45 | |
平均故障检测率 | 57.4% | 0 | 9.6% | 74.1% | 57.7% | 82.7% | 69.4% | 79.5% | 84.9% | 89.8% |
索引 | 变量 | 说明 |
---|---|---|
1 | 进料浓度 | |
2 | 进料温度 | |
3 | 反应物浓度 | |
4 | 反应物温度 | |
5 | 冷却剂流速 | |
6 | 入口冷却剂温度 | |
7 | 冷却剂温度 |
Table 4 Description of the variables in the closed-loop CSTR model
索引 | 变量 | 说明 |
---|---|---|
1 | 进料浓度 | |
2 | 进料温度 | |
3 | 反应物浓度 | |
4 | 反应物温度 | |
5 | 冷却剂流速 | |
6 | 入口冷却剂温度 | |
7 | 冷却剂温度 |
分档 | 概率单位 | WRSR | 分档结果 |
---|---|---|---|
>6 | >0.670 | 22、26、25、24 | |
>0.681 | 29、38、35、34 | ||
>0.685 | 40、22、39、31 | ||
4~6 | 0.319~0.670 | 32、31、27、37、34、36、33、28、23、29、35、39、20、38 | |
0.322~0.681 | 33、25、27、32、28、23、22、21、39、40、30、36、24、37 | ||
0.323~0.685 | 25、29、20、38、30、33、27、34、37、36、26、24、28、21 | ||
<4 | <0.319 | 21、40、30 | |
<0.322 | 31、20、26 | ||
<0.323 | 32、35、23 |
Table 6 RSR binning results for parameter B in the CSTR system
分档 | 概率单位 | WRSR | 分档结果 |
---|---|---|---|
>6 | >0.670 | 22、26、25、24 | |
>0.681 | 29、38、35、34 | ||
>0.685 | 40、22、39、31 | ||
4~6 | 0.319~0.670 | 32、31、27、37、34、36、33、28、23、29、35、39、20、38 | |
0.322~0.681 | 33、25、27、32、28、23、22、21、39、40、30、36、24、37 | ||
0.323~0.685 | 25、29、20、38、30、33、27、34、37、36、26、24、28、21 | ||
<4 | <0.319 | 21、40、30 | |
<0.322 | 31、20、26 | ||
<0.323 | 32、35、23 |
故障 | KPCA | KICA | WSLKPCA | WSFKICA | ETEn | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SPE | SPE | SPE | SPE | ESPE | |||||||
1 | 故障检测率/% | 57.6 | 0 | 45.8 | 39.0 | 93.4 | 76.1 | 84.2 | 93.6 | 99.4 | 99.0 |
误报率/% | 4.6 | 0 | 1.2 | 0.7 | 7.9 | 4.4 | 4.7 | 4.4 | 0 | 0 | |
DD/min | 65 | ND | 42 | 46 | 38 | 113 | 0 | 0 | 8 | 10 | |
2 | 故障检测率/% | 48.4 | 0 | 10.6 | 36.4 | 68.9 | 72.7 | 28.9 | 76.1 | 99.4 | 86.6 |
误报率/% | 0.6 | 0 | 0.6 | 0.8 | 2.4 | 0.8 | 0 | 3.4 | 0.4 | 0 | |
DD/min | 338 | ND | 447 | 294 | 161 | 142 | 80 | 8 | 10 | 74 | |
3 | 故障检测率/% | 38.2 | 0 | 18.6 | 20.6 | 83.4 | 76.1 | 69.3 | 63.5 | 99.6 | 99.2 |
误报率/% | 1 | 0 | 3.3 | 1.9 | 0 | 3.6 | 4.7 | 4.4 | 0.2 | 0 | |
DD/min | 101 | ND | 93 | ND | 61 | 36 | 0 | 0 | 7 | 9 | |
平均故障检测率/% | 48.1 | 0 | 25.0 | 32.0 | 81.9 | 75.0 | 60.8 | 77.7 | 99.5 | 94.9 |
Table 7 The detection performance of the five methods for the CSTR system
故障 | KPCA | KICA | WSLKPCA | WSFKICA | ETEn | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SPE | SPE | SPE | SPE | ESPE | |||||||
1 | 故障检测率/% | 57.6 | 0 | 45.8 | 39.0 | 93.4 | 76.1 | 84.2 | 93.6 | 99.4 | 99.0 |
误报率/% | 4.6 | 0 | 1.2 | 0.7 | 7.9 | 4.4 | 4.7 | 4.4 | 0 | 0 | |
DD/min | 65 | ND | 42 | 46 | 38 | 113 | 0 | 0 | 8 | 10 | |
2 | 故障检测率/% | 48.4 | 0 | 10.6 | 36.4 | 68.9 | 72.7 | 28.9 | 76.1 | 99.4 | 86.6 |
误报率/% | 0.6 | 0 | 0.6 | 0.8 | 2.4 | 0.8 | 0 | 3.4 | 0.4 | 0 | |
DD/min | 338 | ND | 447 | 294 | 161 | 142 | 80 | 8 | 10 | 74 | |
3 | 故障检测率/% | 38.2 | 0 | 18.6 | 20.6 | 83.4 | 76.1 | 69.3 | 63.5 | 99.6 | 99.2 |
误报率/% | 1 | 0 | 3.3 | 1.9 | 0 | 3.6 | 4.7 | 4.4 | 0.2 | 0 | |
DD/min | 101 | ND | 93 | ND | 61 | 36 | 0 | 0 | 7 | 9 | |
平均故障检测率/% | 48.1 | 0 | 25.0 | 32.0 | 81.9 | 75.0 | 60.8 | 77.7 | 99.5 | 94.9 |
1 | Ge Z Q. Review on data-driven modeling and monitoring for plant-wide industrial processes[J]. Chemometrics and Intelligent Laboratory Systems, 2017, 171: 16-25. |
2 | Zhang Y, Bingham C, Garlick M, et al. Applied fault detection and diagnosis for industrial gas turbine systems[J]. International Journal of Automation and Computing, 2017, 14(4): 463-473. |
3 | Safaeipour H, Forouzanfar M, Casavola A. A survey and classification of incipient fault diagnosis approaches[J]. Journal of Process Control, 2021, 97: 1-16. |
4 | 文成林, 吕菲亚, 包哲静, 等. 基于数据驱动的微小故障诊断方法综述[J]. 自动化学报, 2016, 42(9): 1285-1299. |
Wen C L, Lyu F Y, Bao Z J, et al. A review of data driven-based incipient fault diagnosis[J]. Acta Automatica Sinica, 2016, 42(9): 1285-1299. | |
5 | 李娟, 周东华, 司小胜, 等. 微小故障诊断方法综述[J]. 控制理论与应用, 2012, 29(12): 1517-1529. |
Li J, Zhou D H, Si X S, et al. Review of incipient fault diagnosis methods[J]. Control Theory & Applications, 2012, 29(12): 1517-1529. | |
6 | Arunthavanathan R, Khan F, Ahmed S, et al. Fault detection and diagnosis in process system using artificial intelligence-based cognitive technique[J]. Computers & Chemical Engineering, 2020, 134: 106697. |
7 | Lou Z J, Wang Y Q, Si Y B, et al. A novel multivariate statistical process monitoring algorithm: orthonormal subspace analysis[J]. Automatica, 2022, 138: 110148. |
8 | Liu L, Liu J C, Wang H H, et al. A multivariate monitoring method based on kernel principal component analysis and dual control chart[J]. Journal of Process Control, 2023, 127: 102994. |
9 | Qin Y H, Yan Y Y, Ji H Q, et al. Recursive correlative statistical analysis method with sliding windows for incipient fault detection[J]. IEEE Transactions on Industrial Electronics, 2022, 69(4): 4185-4194. |
10 | 衷路生, 解冬东. 基于鲁棒ICA-PCA的TE故障诊断[J]. 计算机应用研究, 2016, 33(10): 3026-3030. |
Zhong L S, Xie D D. Robust ICA-PCA based TE process monitoring and fault diagnosis[J]. Application Research of Computers, 2016, 33(10): 3026-3030. | |
11 | Lei Y F, Jiang W L, Jiang A Q, et al. Fault diagnosis method for hydraulic directional valves integrating PCA and XGBoost[J]. Processes, 2019, 7(9): 589. |
12 | 顾炳斌, 熊伟丽. 基于多块信息提取的PCA故障诊断方法[J]. 化工学报, 2019, 70(2): 736-749. |
Gu B B, Xiong W L. Fault diagnosis based on PCA method with multi-block information extraction[J]. CIESC Journal, 2019, 70(2): 736-749. | |
13 | Benitez J, Henseler J, Castillo A, et al. How to perform and report an impactful analysis using partial least squares: guidelines for confirmatory and explanatory IS research[J]. Information & Management, 2020, 57(2): 103168. |
14 | Purwanto A. Partial least squares structural squation modeling (PLS-SEM) analysis for social and management research: a literature review[J]. Journal of Industrial Engineering & Management Research, 2021, 2(4): 114-123. |
15 | 邓佳伟, 邓晓刚, 曹玉苹, 等. 基于加权统计局部核主元分析的非线性化工过程微小故障诊断方法[J]. 化工学报, 2019, 70(7): 2594-2605. |
Deng J W, Deng X G, Cao Y P, et al. Incipient fault diagnosis method of nonlinear chemical process based on weighted statistical local KPCA[J]. CIESC Journal, 2019, 70(7): 2594-2605. | |
16 | Ge W S, Wang J, Zhou J L, et al. Incipient fault detection based on fault extraction and residual evaluation[J]. Industrial & Engineering Chemistry Research, 2015, 54(14): 3664-3677. |
17 | Zhao C H, Gao F R. A sparse dissimilarity analysis algorithm for incipient fault isolation with no priori fault information[J]. Control Engineering Practice, 2017, 65: 70-82. |
18 | Shang J, Chen M Y, Ji H Q, et al. Recursive transformed component statistical analysis for incipient fault detection[J]. Automatica, 2017, 80: 313-327. |
19 | Ji H Q, He X, Shang J, et al. Incipient fault detection with smoothing techniques in statistical process monitoring[J]. Control Engineering Practice, 2017, 62: 11-21. |
20 | 张彩霞, 王子涵, 文成林, 等. 样本空间基于多级高维特征表示的微小故障诊断[J]. 电子学报, 2020, 48(8): 1647-1654. |
Zhang C X, Wang Z H, Wen C L, et al. Sample space based on multi-level high dimensional feature representation micro-fault diagnosis[J]. Acta Electronica Sinica, 2020, 48(8): 1647-1654. | |
21 | 鲍中新, 文成林, 马雪. 一种基于数据变化率的预处理及主元分析故障诊断方法[J]. 电子学报, 2021, 49(11): 2234-2240. |
Bao Z X, Wen C L, Ma X. Data preprocessing and PCA fault diagnosis method based on rate of change transformation[J]. Acta Electronica Sinica, 2021, 49(11): 2234-2240. | |
22 | 郭金玉, 王哲, 李元. 基于核熵独立成分分析的故障检测方法[J]. 化工学报, 2022, 73(8): 3647-3658. |
Guo J Y, Wang Z, Li Y. Fault detection method based on kernel entropy independent component analysis[J]. CIESC Journal, 2022, 73(8): 3647-3658. | |
23 | 张成, 潘立志, 李元. 基于加权统计特征KICA的故障检测与诊断方法[J]. 化工学报, 2022, 73(2): 827-837. |
Zhang C, Pan L Z, Li Y. Fault detection and diagnosis method based on weighted statistical feature KICA[J]. CIESC Journal, 2022, 73(2): 827-837. | |
24 | Ge Z Q, Zhang M G, Song Z H. Nonlinear process monitoring based on linear subspace and Bayesian inference[J]. Journal of Process Control, 2010, 20(5): 676-688. |
25 | 徐莹, 邓晓刚, 钟娜. 基于ICA混合模型的多工况过程故障诊断方法[J]. 化工学报, 2016, 67(9): 3793-3803. |
Xu Y, Deng X G, Zhong N. A fault diagnosis method for multimode processes based on ICA mixture models[J]. CIESC Journal, 2016, 67(9): 3793-3803. | |
26 | Tong C D, Lan T, Shi X H. Ensemble modified independent component analysis for enhanced non-Gaussian process monitoring[J]. Control Engineering Practice, 2017, 58: 34-41. |
27 | Bach F. Information theory with kernel methods[J]. IEEE Transactions on Information Theory, 2023, 69(2): 752-775. |
28 | 严少乐, 刘炜. 基于秩和比法的物流网络空间布局规划[J]. 物流技术, 2020, 39(9): 103-105, 111. |
Yan S L, Liu W. Logistics network spatial layout planning based on rank sum ratio[J]. Logistics Technology, 2020, 39(9): 103-105, 111. | |
29 | Yue H H, Qin S J. Reconstruction-based fault identification using a combined index[J]. Industrial & Engineering Chemistry Research, 2001, 40(20): 4403-4414. |
30 | Pilario K E S, Cao Y. Canonical variate dissimilarity analysis for process incipient fault detection[J]. IEEE Transactions on Industrial Informatics, 2018, 14(12): 5308-5315. |
[1] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[2] | Minghui YANG, Xiaoyue LIU, Xiaogang DENG, Mingyan LIAO, Chunwang HOU. Incipient fault detection for dynamic chemical processes based on weighted probability CVDA [J]. CIESC Journal, 2022, 73(9): 3963-3972. |
[3] | Libang LIU, Song YANG, Zhijian WANG, Xinxin HE, Wenlei ZHAO, Shoujun LIU, Wenguang DU, Jie MI. Prediction of coke quality based on improved WOA-LSTM [J]. CIESC Journal, 2022, 73(3): 1291-1299. |
[4] | Cheng ZHANG, Lizhi PAN, Yuan LI. Fault detection and diagnosis method based on weighted statistical feature KICA [J]. CIESC Journal, 2022, 73(2): 827-837. |
[5] | LI Yuan, YANG Dongsheng, ZHAO Liying, ZHANG Cheng. Fault detection using hierarchical variational Gaussian mixture model and principal polynomial analysis [J]. CIESC Journal, 2021, 72(3): 1616-1626. |
[6] | ZHU Xiongzhuo, ZHANG Hanwen, YANG Chunjie. MWPCA blast furnace anomaly monitoring algorithm based on Gaussian mixture model [J]. CIESC Journal, 2021, 72(3): 1539-1548. |
[7] | Jiawei DENG, Xiaogang DENG, Yuping CAO, Xiaoling ZHANG. Incipient fault diagnosis method of nonlinear chemical process based on weighted statistical local KPCA [J]. CIESC Journal, 2019, 70(7): 2594-2605. |
[8] | Junmiao TANG, Haizhen YU, Xuhua SHI, Chudong TONG. Dynamic monitoring of chemical processes based on latent variable auto-regressive algorithm [J]. CIESC Journal, 2019, 70(3): 987-994. |
[9] | Kun ZHAI, Wenxia DU, Feng LYU, Tao XIN, Xiyuan JU. Fault detect method based on improved dynamic kernel principal component analysis [J]. CIESC Journal, 2019, 70(2): 716-722. |
[10] | Zhiqiang GENG, Shaoxing JING, Ju BAI, Zhongkai WANG, Qunxiong ZHU, Yongming HAN. Improved intelligent warning method based on MWSPCA-CBR and its application in petrochemical industries [J]. CIESC Journal, 2019, 70(2): 572-580. |
[11] | Bingbin GU, Weili XIONG. Fault diagnosis based on PCA method with multi-block information extraction [J]. CIESC Journal, 2019, 70(2): 736-749. |
[12] | Baochang XU, Hua ZHANG, Jinshan WANG. Partial approximate least absolute deviation for nonlinear system identification based on radial basis function [J]. CIESC Journal, 2019, 70(2): 653-660. |
[13] | GAO Xuejin, HUANG Mengdan, QI Yongsheng, WANG Pu. Batch process monitoring using multiphase AR-PCA optimized with PDPSO [J]. CIESC Journal, 2018, 69(9): 3914-3923. |
[14] | DONG Shun, LI Yiguo, SUN Shuanzhu, LIU Xichui, SHEN Jiong. Fault detection method based on state space-PCANet [J]. CIESC Journal, 2018, 69(8): 3528-3536. |
[15] | FENG Liwei, ZHANG Cheng, LI Yuan, XIE Yanhong. DLNS-PCA-based fault detection for multimode batch process [J]. CIESC Journal, 2018, 69(7): 3159-3166. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 438
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 257
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||