CIESC Journal ›› 2023, Vol. 74 ›› Issue (8): 3419-3428.DOI: 10.11949/0438-1157.20230508
• Process system engineering • Previous Articles Next Articles
Gang YIN1(), Yihui LI1, Fei HE2, Wenqi CAO3, Min WANG4, Feiya YAN5, Yu XIANG6, Jian LU5, Bin LUO7, Runting LU5
Received:
2023-05-29
Revised:
2023-08-24
Online:
2023-10-18
Published:
2023-08-25
Contact:
Gang YIN
尹刚1(), 李伊惠1, 何飞2, 曹文琦3, 王民4, 颜非亚5, 向禹6, 卢剑5, 罗斌7, 卢润廷5
通讯作者:
尹刚
作者简介:
尹刚(1964—),男,博士,教授,yk115@cqu.edu.cn
基金资助:
CLC Number:
Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM[J]. CIESC Journal, 2023, 74(8): 3419-3428.
尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428.
Feature | Name | Description |
---|---|---|
1 | cell age | operation days of the aluminium reduction cell |
2 | average voltage | average value of voltage during a day |
3 | series current | the actual current value of the workshop on the day |
4 | noise | the noise value generated by the operation during a day |
5 | anode displacement | the displacement of anode during a day |
6 | electrolysis temperature | internal temperature of aluminium electrolytic cell |
7 | molecular ratio | molecules number ratio of NaF to AlF3 in electrolyte |
8 | AlF3 feeding amount | auxiliary material fluoride salt in aluminium electrolyte |
9 | aluminium liquid level | height of aluminium liquid in aluminium electrolytic cell |
10 | electrolyte level | height of electrolyte in aluminium electrolytic cell |
11 | TAP volume | aluminium tapping volume a day |
12 | Fe content | Fe content in liquid aluminium |
13 | Si content | Si content in liquid aluminium |
Table 1 Input characteristic parameters of the model
Feature | Name | Description |
---|---|---|
1 | cell age | operation days of the aluminium reduction cell |
2 | average voltage | average value of voltage during a day |
3 | series current | the actual current value of the workshop on the day |
4 | noise | the noise value generated by the operation during a day |
5 | anode displacement | the displacement of anode during a day |
6 | electrolysis temperature | internal temperature of aluminium electrolytic cell |
7 | molecular ratio | molecules number ratio of NaF to AlF3 in electrolyte |
8 | AlF3 feeding amount | auxiliary material fluoride salt in aluminium electrolyte |
9 | aluminium liquid level | height of aluminium liquid in aluminium electrolytic cell |
10 | electrolyte level | height of electrolyte in aluminium electrolytic cell |
11 | TAP volume | aluminium tapping volume a day |
12 | Fe content | Fe content in liquid aluminium |
13 | Si content | Si content in liquid aluminium |
Algorithm | Parameter | Value |
---|---|---|
KPCA | kernel function | Gaussian |
gamma | 1/n | |
SVM | SVM type | C-SVC |
kernel function | Gaussian | |
n-fold | 8 | |
SSA | pop | 100 |
max iteration | 30 | |
ST | 0.6 | |
PD | 0.7 | |
SD | 0.2 |
Table 2 Parameters of model
Algorithm | Parameter | Value |
---|---|---|
KPCA | kernel function | Gaussian |
gamma | 1/n | |
SVM | SVM type | C-SVC |
kernel function | Gaussian | |
n-fold | 8 | |
SSA | pop | 100 |
max iteration | 30 | |
ST | 0.6 | |
PD | 0.7 | |
SD | 0.2 |
Confusion matrix | Predicted | ||
---|---|---|---|
Labeled as positive | Labeled as negative | ||
true | labeled as positive | true positive (TP) | false negative (FN) |
labeled as negative | false positive (FP) | true negative (TN) |
Table 3 Confusion matrix
Confusion matrix | Predicted | ||
---|---|---|---|
Labeled as positive | Labeled as negative | ||
true | labeled as positive | true positive (TP) | false negative (FN) |
labeled as negative | false positive (FP) | true negative (TN) |
1 | 刘大钧, 汪家权. 我国电解铝行业现状分析及环保优化发展的对策建议[J]. 轻金属, 2014(9): 9-13. |
Liu D J, Wang J Q. Status analysis on aluminum industry in China and countermeasures of optimization development of environmental protection[J]. Light Metals, 2014(9): 9-13. | |
2 | 高文义, 张文章. 电解铝行业事故发生的原因探析[J]. 世界有色金属, 2022(2): 105-107. |
Gao W Y, Zhang W Z. Analysis on the causes of electrolytic aluminum industry accidents[J]. World Nonferrous Metals, 2022(2): 105-107. | |
3 | 林燕, 周孑民, 周萍. 大型预焙铝电解槽槽膛内形的在线仿真[J]. 湖南冶金, 2006, 34(6): 8-10, 23. |
Lin Y, Zhou J M, Zhou P. The on-line simulation of the freeze profile of large scale prebaked aluminum electrolytic cells[J]. Hunan Metallurgy, 2006, 34(6): 8-10, 23. | |
4 | 李劼, 王志刚, 赖延清, 等. 5 kA惰性阳极铝电解槽槽膛内形及热平衡[J]. 过程工程学报, 2008, 8(S1): 54-58. |
Li J, Wang Z G, Lai Y Q, et al. Cell profile and heat balance of 5 kA inert anode aluminum reduction cell[J]. The Chinese Journal of Process Engineering, 2008, 8(S1): 54-58. | |
5 | 邓胜祥, 马和平, 谢青松, 等. 预焙铝电解槽在线仿真槽况诊断专家系统研究[J]. 计算机测量与控制, 2011, 19(8): 1850-1852. |
Deng S X, Ma H P, Xie Q S, et al. A study of on-line simulation and cell condition diagnosis expert system of prebaked cell for aluminum-reduction[J]. Computer Measurement & Control, 2011, 19(8): 1850-1852. | |
6 | 尹刚, 陈根, 何文, 等. 基于SDAE和随机森林的铝电解槽阳极效应预测方法研究[J]. 稀有金属, 2021, 45(4): 428-436. |
Yin G, Chen G, He W, et al. A method for anode effect prediction of aluminium electrolysis cell based on SDAE and random forest[J]. Chinese Journal of Rare Metals, 2021, 45(4): 428-436. | |
7 | Zhou K B, Zhang Z X, Liu J, et al. Anode effect prediction based on a singular value thresholding and extreme gradient boosting approach[J]. Measurement Science and Technology, 2019, 30(1): 015104. |
8 | 曾水平, 崔福伟, 邹爱笑. 300 kA预焙阳极铝电解槽阴极状况的诊断[J]. 轻金属, 2017(1): 25-30. |
Zeng S P, Cui F W, Zou A X. The diagnosis of cathodes of 300 kA prebaked anode aluminum reduction pot[J]. Light Metals, 2017(1): 25-30. | |
9 | 李浩然. 基于数据驱动的铝电解槽况评判与故障诊断方法研究[D]. 南宁: 广西大学, 2022. |
Li H R. Research on cell condition evaluation and fault diagnosis method of aluminum electrolysis based on data drive[D]. Nanning: Guangxi University, 2022. | |
10 | 易军, 李太福, 田应甫, 等. 基于对称Alpha稳定分布概率神经网络的铝电解槽况诊断[J]. 化工学报, 2012, 63(10): 3196-3201. |
Yi J, Li T F, Tian Y F, et al. Diagnosis of status of aluminum reduction cells based on symmetric Alpha-stable probabilistic distribution neural network[J]. CIESC Journal, 2012, 63(10): 3196-3201. | |
11 | Lei Y X, Chen X F, Min M C, et al. A semi-supervised Laplacian extreme learning machine and feature fusion with CNN for industrial superheat identification[J]. Neurocomputing, 2020, 381: 186-195. |
12 | Gao T H, Zhang K, Shi H T, et al. A two-stage classifier switchable aluminum electrolysis fault diagnosis method[J]. Transactions of the Institute of Measurement and Control, 2022, 44(8): 1708-1720. |
13 | 李贺松, 殷小宝, 黄涌波, 等. 基于阳极电流波动的铝电解槽槽况诊断系统[J]. 化工学报, 2011, 62(6): 1770-1777. |
Li H S, Yin X B, Huang Y B, et al. Diagnosis system of different status of aluminum reduction cells based on anode current fluctuation[J]. CIESC Journal, 2011, 62(6): 1770-1777. | |
14 | 尹刚, 向冬梅, 王民, 等. 基于数据驱动的铝电解槽剩余寿命预测方法研究[J]. 稀有金属, 2023, 47(2): 273-280. |
Yin G, Xiang D M, Wang M, et al. Prediction method of remaining life of aluminum reduction cell based on data drive[J]. Chinese Journal of Rare Metals, 2023, 47(2): 273-280. | |
15 | 何葵东, 王卫玉, 金艳, 等. 基于CNN-SVM的水电机组智能故障诊断方法研究[J]. 水电能源科学, 2023, 41(4): 207-210, 215. |
He K D, Wang W Y, Jin Y, et al. Research on intelligent fault diagnosis method of hydroelectric generating unit based on CNN-SVM[J]. Water Resources and Power, 2023, 41(4): 207-210, 215. | |
16 | Zhang J X, Xu Y Y, Chen H X, et al. A novel building heat pump system semi-supervised fault detection and diagnosis method under small and imbalanced data[J]. Engineering Applications of Artificial Intelligence, 2023, 123: 106316. |
17 | Du J G. Research on small sample nonlinear cointegration test and modeling based on the LS-SVM optimized by PSO[J]. Complexity, 2022, 2022:1-11. |
18 | Chi M M, Feng R, Bruzzone L. Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem[J]. Advances in Space Research, 2008, 41(11): 1793-1799. |
19 | Jolliffe I T. Principal Component Analysis[M]. 2nd ed. New York: Springer-Verlag, 2002. |
20 | 薄青红, 刘光定, 张明, 等. 基于PCA和GA-SVM联合模型的数控转台升降系统故障诊断[J]. 机械设计与研究, 2022, 38(5): 221-224. |
Bo Q H, Liu G D, Zhang M, et al. Fault diagnosis of NC turntable lifting system based on PCA and GA-SVM combined model[J]. Machine Design & Research, 2022, 38(5): 221-224. | |
21 | 吴建宁, 林秋婷, 伍滨. 基于核主成分分析的相关向量机人体动作分类新型模型[J]. 中国生物医学工程学报, 2022, 41(6): 641-649. |
Wu J N, Lin Q T, Wu B. A novel KPCA-Based RVM model for human activity classification[J]. Chinese Journal of Biomedical Engineering, 2022, 41(6): 641-649. | |
22 | Wen L Y, Zhang X M, Li Q F, et al. KGA: integrating KPCA and GAN for microbial data augmentation[J]. International Journal of Machine Learning and Cybernetics, 2023, 14(4): 1427-1444. |
23 | Schölkopf B, Smola A, Müller K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5): 1299-1319. |
24 | Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297. |
25 | Xue J K, Shen B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34. |
26 | Tuerxun W, Xu C, Guo H Y, et al. Fault diagnosis of wind turbines based on a support vector machine optimized by the sparrow search algorithm[J]. IEEE Access, 2021, 9: 69307-69315. |
27 | Zhang F, Sun W L, Wang H W, et al. Fault diagnosis of a wind turbine gearbox based on improved variational mode algorithm and information entropy[J]. Entropy, 2021, 23(7): 794. |
28 | 马晨佩, 李明辉, 巩强令, 等. 基于麻雀搜索算法优化支持向量机的滚动轴承故障诊断[J]. 科学技术与工程, 2021, 21(10): 4025-4029. |
Ma C P, Li M H, Gong Q L, et al. Fault diagnosis of rolling bearing based on sparrow search algorithm optimized support vector machine[J]. Science Technology and Engineering, 2021, 21(10): 4025-4029. | |
29 | 刘业翔, 李劼. 现代铝电解[M]. 北京: 冶金工业出版社, 2008: 137. |
Liu Y X, Li J. Modern Aluminum Electrolysis[M]. Beijing: Metallurgical Industry Press, 2008: 137. | |
30 | 郭海东. 铝电解槽槽膛内型影响因素分析及生产实践[J]. 材料与冶金学报, 2010, 9(S1): 59-62. |
Guo H D. Analysis and production practice of influencing factors on the internal profile of aluminum reduction cell[J]. Journal of Materials and Metallurgy, 2010, 9(S1): 59-62. | |
31 | 王进录, 施哲, 丁吉林, 等. 铝电解槽破损判定标准的分析与探讨[J]. 轻金属, 2011(8): 39-41. |
Wang J L, Shi Z, Ding J L, et al. Analysis and discussion for the criterion of the damaged aluminium electrolysis cell[J]. Light Metals, 2011(8): 39-41. | |
32 | 焦庆国, 周云峰, 李昌林, 等. 500 kA铝电解槽早期破损剖析[J]. 有色金属(冶炼部分), 2020(8): 51-55, 67. |
Jiao Q G, Zhou Y F, Li C L, et al. Analysis on early damage of 500 kA electrolytic cell[J]. Nonferrous Metals (Extractive Metallurgy), 2020(8): 51-55, 67. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[3] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[4] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[5] | Linqi YAN, Zhenlei WANG. Multi-step predictive soft sensor modeling based on STA-BiLSTM-LightGBM combined model [J]. CIESC Journal, 2023, 74(8): 3407-3418. |
[6] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[7] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[8] | Nan HU, Demin TAO, Zhaolan YANG, Xuebing WANG, Xiangxu ZHANG, Yulong LIU, Dexin DING. Remediation of percolate water from uranium tailings reservoir by coupling iron-carbon micro-electrolysis and sulfate reducing bacteria [J]. CIESC Journal, 2023, 74(6): 2655-2667. |
[9] | Cheng YUN, Qianlin WANG, Feng CHEN, Xin ZHANG, Zhan DOU, Tingjun YAN. Deep-mining risk evolution path of chemical processes based on community structure [J]. CIESC Journal, 2023, 74(4): 1639-1650. |
[10] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[11] | Xuerong GU, Shuoshi LIU, Siyu YANG. Research on multi-parameter optimization method based on parallel EGO and surrogate-assisted model [J]. CIESC Journal, 2023, 74(3): 1205-1215. |
[12] | Xinyuan WU, Qilei LIU, Boyuan CAO, Lei ZHANG, Jian DU. Group2vec: group vector representation and its property prediction applications based on unsupervised machine learning [J]. CIESC Journal, 2023, 74(3): 1187-1194. |
[13] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
[14] | Haiou YUAN, Fangjun YE, Shuo ZHANG, Yiqing LUO, Xigang YUAN. Synthesis of heat-integrated distillation sequences with intermediate heat exchangers [J]. CIESC Journal, 2023, 74(2): 796-806. |
[15] | Jiahui CHEN, Xinze YANG, Guzhong CHEN, Zhen SONG, Zhiwen QI. A critical discussion on developing molecular property prediction models: density of ionic liquids as example [J]. CIESC Journal, 2023, 74(2): 630-641. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 258
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 190
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||