CIESC Journal ›› 2023, Vol. 74 ›› Issue (8): 3386-3393.DOI: 10.11949/0438-1157.20230562
• Separation engineering • Previous Articles Next Articles
Ruihang ZHANG1(), Pan CAO1, Feng YANG2, Kun LI1, Peng XIAO1, Chun DENG1(
), Bei LIU1, Changyu SUN1, Guangjin CHEN1
Received:
2023-06-09
Revised:
2023-08-17
Online:
2023-10-18
Published:
2023-08-25
Contact:
Chun DENG
张瑞航1(), 曹潘1, 杨锋2, 李昆1, 肖朋1, 邓春1(
), 刘蓓1, 孙长宇1, 陈光进1
通讯作者:
邓春
作者简介:
张瑞航(1995—),男,博士研究生,1847000586@qq.com
基金资助:
CLC Number:
Ruihang ZHANG, Pan CAO, Feng YANG, Kun LI, Peng XIAO, Chun DENG, Bei LIU, Changyu SUN, Guangjin CHEN. Analysis of key parameters affecting product purity of natural gas ethane recovery process via ZIF-8 nanofluid[J]. CIESC Journal, 2023, 74(8): 3386-3393.
张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393.
组分 | 含量/%(mol) |
---|---|
C1 | 82.700 |
C2 | 9.730 |
C3 | 5.740 |
iC4 | 0.770 |
nC4 | 0.770 |
iC5 | 0.050 |
nC5 | 0.050 |
C6 | 0.010 |
N2 | 0.180 |
Table 1 Composition of natural gas
组分 | 含量/%(mol) |
---|---|
C1 | 82.700 |
C2 | 9.730 |
C3 | 5.740 |
iC4 | 0.770 |
nC4 | 0.770 |
iC5 | 0.050 |
nC5 | 0.050 |
C6 | 0.010 |
N2 | 0.180 |
气体 种类 | 水中溶解度/ (mmol/g) | 乙二醇中溶解度/ (mmol/g) | ZIF-8中吸附量/ (mmol/g) |
---|---|---|---|
甲烷 | 0.0142 | 0.0680 | 0.260 |
乙烷 | 0.0204 | 0.182 | 2.04 |
Table 2 Solubility of CH4/C2H6 in water/glycol and their adsorption capacity in ZIF-8
气体 种类 | 水中溶解度/ (mmol/g) | 乙二醇中溶解度/ (mmol/g) | ZIF-8中吸附量/ (mmol/g) |
---|---|---|---|
甲烷 | 0.0142 | 0.0680 | 0.260 |
乙烷 | 0.0204 | 0.182 | 2.04 |
吸收-吸附塔 理论板数 | 闪蒸压力/MPa | 解吸压力/MPa | 气液比 | 乙烷产品纯度/% |
---|---|---|---|---|
3 | 0.1 | 0.01 | 60 | 91.0 |
4 | 0.1 | 0.01 | 60 | 93.0 |
5 | 0.1 | 0.01 | 60 | 94.0 |
6 | 0.1 | 0.01 | 60 | 94.4 |
7 | 0.1 | 0.01 | 60 | 94.6 |
6 | 0.05 | 0.01 | 60 | 99.2 |
6 | 0.3 | 0.01 | 60 | 74.2 |
6 | 0.5 | 0.01 | 60 | 67.7 |
6 | 0.1 | 0.005 | 60 | 93.4 |
6 | 0.1 | 0.03 | 60 | 96.0 |
6 | 0.1 | 0.05 | 60 | 94.8 |
6 | 0.1 | 0.01 | 40 | 85.6 |
6 | 0.1 | 0.01 | 50 | 90.7 |
6 | 0.1 | 0.01 | 70 | 96.5 |
Table 3 Effects of process operating parameters on purity of ethane products
吸收-吸附塔 理论板数 | 闪蒸压力/MPa | 解吸压力/MPa | 气液比 | 乙烷产品纯度/% |
---|---|---|---|---|
3 | 0.1 | 0.01 | 60 | 91.0 |
4 | 0.1 | 0.01 | 60 | 93.0 |
5 | 0.1 | 0.01 | 60 | 94.0 |
6 | 0.1 | 0.01 | 60 | 94.4 |
7 | 0.1 | 0.01 | 60 | 94.6 |
6 | 0.05 | 0.01 | 60 | 99.2 |
6 | 0.3 | 0.01 | 60 | 74.2 |
6 | 0.5 | 0.01 | 60 | 67.7 |
6 | 0.1 | 0.005 | 60 | 93.4 |
6 | 0.1 | 0.03 | 60 | 96.0 |
6 | 0.1 | 0.05 | 60 | 94.8 |
6 | 0.1 | 0.01 | 40 | 85.6 |
6 | 0.1 | 0.01 | 50 | 90.7 |
6 | 0.1 | 0.01 | 70 | 96.5 |
P/MPa | Vtk/ (mol/h) | Ltk/ (mol/h) | LVtk/ (mol/h) | FR | DR | xtk,2/ %(mol) | yde,2/ %(mol) |
---|---|---|---|---|---|---|---|
0.03 | 349 | 10694 | 108 | 0.0326 | 3.23 | 99.9 | 99.9 |
0.05 | 298 | 10743 | 156 | 0.0278 | 1.91 | 99.8 | 99.7 |
0.07 | 257 | 10775 | 188 | 0.0239 | 1.37 | 99.1 | 98.9 |
0.09 | 224 | 10783 | 196 | 0.0208 | 1.14 | 96.7 | 95.9 |
0.1 | 212 | 10786 | 199 | 0.0197 | 1.07 | 95.4 | 94.4 |
0.2 | 151 | 10809 | 223 | 0.0140 | 0.678 | 84.9 | 82.4 |
0.3 | 119 | 10830 | 243 | 0.0110 | 0.489 | 77.3 | 74.4 |
Table 4 Purity of ethane products under different flash pressure and flash boilup ratio
P/MPa | Vtk/ (mol/h) | Ltk/ (mol/h) | LVtk/ (mol/h) | FR | DR | xtk,2/ %(mol) | yde,2/ %(mol) |
---|---|---|---|---|---|---|---|
0.03 | 349 | 10694 | 108 | 0.0326 | 3.23 | 99.9 | 99.9 |
0.05 | 298 | 10743 | 156 | 0.0278 | 1.91 | 99.8 | 99.7 |
0.07 | 257 | 10775 | 188 | 0.0239 | 1.37 | 99.1 | 98.9 |
0.09 | 224 | 10783 | 196 | 0.0208 | 1.14 | 96.7 | 95.9 |
0.1 | 212 | 10786 | 199 | 0.0197 | 1.07 | 95.4 | 94.4 |
0.2 | 151 | 10809 | 223 | 0.0140 | 0.678 | 84.9 | 82.4 |
0.3 | 119 | 10830 | 243 | 0.0110 | 0.489 | 77.3 | 74.4 |
1 | 温翯, 郭晓莉, 苟尕莲, 等. 乙烷裂解制乙烯的工艺研究进展[J]. 现代化工, 2020, 40(5): 47-51. |
Wen H, Guo X L, Gou G L, et al. Process research advances in ethane cracking to ethylene[J]. Modern Chemical Industry, 2020, 40(5): 47-51. | |
2 | 李月清, 陈庆利. 进口“乙烷制乙烯”产业链险象环生[J]. 中国石油企业, 2021(10): 42-43. |
Li Y Q, Chen Q L. The imported “ethane to ethylene” industrial chain is in danger[J]. China Petroleum Enterprise, 2021(10): 42-43. | |
3 | 饶何隆, 马国光. 天然气乙烷回收关键参数分析研究[J]. 北京化工大学学报(自然科学版), 2022, 49(1): 35-43. |
Rao H L, Ma G G. Analysis of the key parameters governing ethane recovery from natural gas[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2022, 49(1): 35-43. | |
4 | 何婷, 林文胜. 高含乙烷天然气氮膨胀液化分离流程[J]. 化工学报, 2018, 69(S2): 226-231. |
He T, Lin W S. Nitrogen expansion liquefaction and separation process for natural gas with high ethane content[J]. CIESC Journal, 2018, 69(S2): 226-231. | |
5 | 邵青楠, 顾鑫诚, 邓春, 等. 天然气处理工艺建模与模拟进展[J]. 石油科学通报, 2019, 4(2): 192-203. |
Shao Q N, Gu X C, Deng C, et al. Research advances in the simulation and modeling of natural gas treatment process[J]. Petroleum Science Bulletin, 2019, 4(2): 192-203. | |
6 | Park J H, Khan M S, Andika R, et al. Techno-economic evaluation of a novel NGL recovery scheme with nine patented schemes for offshore applications[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 2-17. |
7 | Campbell R E, Wilkinson J D, Rambo C L. Hydrocarbon gas processing: US4171964[P]. 1979-10-23. |
8 | 崔连来. 天然气深冷工艺装置提高乙烷收率工艺技术的研究与应用[J]. 石油与天然气化工, 2022, 51(3): 65-70. |
Cui L L. Research and application of improving ethane recovery rate approaches in natural gas cryogenic unit[J]. Chemical Engineering of Oil & Gas, 2022, 51(3): 65-70. | |
9 | Campbell R E, Wilkinson J D. Hydrocarbon gas processing: US4278457[P]. 1981-07-14. |
10 | Salas S D, Contreras-Salas L, Rubio-Dueñas P, et al. A multi-objective evolutionary optimization framework for a natural gas liquids recovery unit[J]. Computers & Chemical Engineering, 2021, 151: 107363. |
11 | Campbell R E, Wilkinson J D, Hudson H M. Hydrocarbon gas processing: US4889545[P]. 1989-12-26. |
12 | Kherbeck L, Chebbi R. Optimizing ethane recovery in turboexpander processes[J]. Journal of Industrial and Engineering Chemistry, 2015, 21: 292-297. |
13 | Chebeir J, Salas S D, Romagnoli J A. Operability assessment on alternative natural gas liquids recovery schemes[J]. Journal of Natural Gas Science and Engineering, 2019, 71: 102974. |
14 | Campbell R E, Wilkinson J D, Hudson H M. Hydrocarbon gas processing: US5568737[P]. 1996-10-29. |
15 | Zhang S J, Jiang H, Jing J Q, et al. Comprehensive comparison of enhanced recycle split vapour processes for ethane recovery[J]. Energy Reports, 2020, 6: 1819-1837. |
16 | Zhang S J, Jing J Q, Jiang H, et al. Advanced exergy analyses of modified ethane recovery processes with different refrigeration cycles[J]. Journal of Cleaner Production, 2020, 253: 119982. |
17 | Jiang H, Li H Y. Economic and thermodynamic comparison of enhanced recycle split vapor processes for ethane recovery under different rich feed compositions[J]. Energy Reports, 2021, 7: 8207-8227. |
18 | Guo P T, Chang M, Yan T A, et al. A pillared-layer metal-organic framework for efficient separation of C3H8/C2H6/CH4 in natural gas[J]. Chinese Journal of Chemical Engineering, 2022, 42: 10-16. |
19 | Shi R F, Lv D F, Chen Y W, et al. Highly selective adsorption separation of light hydrocarbons with a porphyrinic zirconium metal-organic framework PCN-224[J]. Separation and Purification Technology, 2018, 207: 262-268. |
20 | Ponraj Y K, Borah B. Separation of methane from ethane and propane by selective adsorption and diffusion in MOF Cu-BTC: a molecular simulation study[J]. Journal of Molecular Graphics and Modelling, 2020, 97: 107574. |
21 | Salimi M, Pirouzfar V, Kianfar E. Novel nanocomposite membranes prepared with PVC/ABS and silica nanoparticles for C2H6/CH4 separation[J]. Polymer Science, Series A, 2017, 59(4): 566-574. |
22 | Altintas C, Keskin S. Molecular simulations of MOF membranes for separation of ethane/ethene and ethane/methane mixtures[J]. RSC Advances, 2017, 7(82): 52283-52295. |
23 | Ma Q L, Chen G J, Zhang L W. Vapor-hydrate phases equilibrium of (CH4+C2H6) and (CH4+C2H4) systems[J]. Petroleum Science, 2008, 5(4): 359-366. |
24 | O'Reilly N, Giri N, James S. Porous liquids[J]. Chemistry - A European Journal, 2007, 13(11): 3020-3025. |
25 | Wang D C, Xin Y Y, Yao D D, et al. Shining light on porous liquids: from fundamentals to syntheses, applications and future challenges[J]. Advanced Functional Materials, 2022, 32(1): 2104162. |
26 | 宇国佳, 靳冬玉, 周智勇, 等. 多孔液体的设计合成与应用研究进展[J]. 化工学报, 2023, 74(1): 257-275. |
Yu G J, Jin D Y, Zhou Z Y, et al. Advances in the design, synthesis and application of porous liquids[J]. CIESC Journal, 2023, 74(1): 257-275. | |
27 | Gomes M C, Pison L, Červinka C, et al. Porous ionic liquids or liquid metal-organic frameworks?[J]. Angewandte Chemie International Edition, 2018, 57(37): 11909-11912. |
28 | Knebel A, Bavykina A, Datta S J, et al. Solution processable metal-organic frameworks for mixed matrix membranes using porous liquids[J]. Nature Materials, 2020, 19(12): 1346-1353. |
29 | Cahir J, Tsang M Y, Lai B B, et al. Type 3 porous liquids based on non-ionic liquid phases—a broad and tailorable platform of selective, fluid gas sorbents[J]. Chemical Science, 2020, 11(8): 2077-2084. |
30 | Liu H, Liu B, Lin L C, et al. A hybrid absorption-adsorption method to efficiently capture carbon[J]. Nature Communications, 2014, 5: 5147. |
31 | Peng X W, Jia C Z, Qiao Z C, et al. A new energy efficient process for hydrogen purification using ZIF-8/glycol-water slurry: experimental study and process modeling[J]. International Journal of Hydrogen Energy, 2021, 46(63): 32081-32098. |
32 | 宗杰, 马庆兰, 陈光进, 等. ZIF-8/乙二醇体系分离捕集CO2溶解度的模拟计算[J]. 化工学报, 2018, 69(10): 4276-4283. |
Zong J, Ma Q L, Chen G J, et al. Simulation of solubility for separating carbon dioxide from gas mixture using ZIF-8/glycol slurry[J]. CIESC Journal, 2018, 69(10): 4276-4283. | |
33 | Chen W, Guo X N, Zou E B, et al. A continuous and high-efficiency process to separate coal bed methane with porous ZIF-8 slurry: experimental study and mathematical modelling[J]. Green Energy & Environment, 2020, 5(3): 347-363. |
34 | 彭晓婉, 郭笑楠, 邓春, 等. ZIF-8浆液法分离CH4/N2的双吸收-吸附塔工艺流程建模与模拟[J]. 化工学报, 2023, 74(2): 784-795. |
Peng X W, Guo X N, Deng C, et al. Modeling and simulation of CH4/N2 separation process with two absorption-adsorption columns using ZIF-8 slurry[J]. CIESC Journal, 2023, 74(2): 784-795. | |
35 | Peng X W, Zhang R H, Wang Z X, et al. High efficient separation of H2/CH4 using ZIF-8/glycol-water slurry: process modelling and multi-objective optimization[J]. International Journal of Hydrogen Energy, 2023, 48(36): 13489-13502. |
36 | Liu H, Pan Y, Liu B, et al. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature[J]. Scientific Reports, 2016, 6: 21114. |
37 | Chen W, Zou E B, Zuo J Y, et al. Separation of ethane from natural gas using porous ZIF-8/water-glycol slurry[J]. Industrial & Engineering Chemistry Research, 2019, 58(23): 9997-10006. |
38 | Li K, Tang H, Huang Z X, et al. Efficient recovery of C2+ alkanes from natural gas using porous ZIF-8/iso-hexadecane slurry on laboratory and pilot-scale[J]. Separation and Purification Technology, 2023, 319: 124084. |
39 | Zhang R H, Wang Z X, Wei X M, et al. Modelling and optimization of ethane recovery process from natural gas via ZIF-8/water-glycol slurry with low energy consumption[J]. Energy, 2023, 263: 125645. |
40 | 王雨帆, 李玉星, 王武昌, 等. LNG接收站冷能用于轻烃回收工艺[J]. 石油与天然气化工, 2015, 44(3): 44-49. |
Wang Y F, Li Y X, Wang W C, et al. Process of light hydrocarbons recovery from LNG with cryogenic energy utilized in LNG terminal[J]. Chemical Engineering of Oil & Gas, 2015, 44(3): 44-49. | |
41 | Peng D Y, Robinson D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64. |
[1] | Congqi HUANG, Yimei WU, Jianye CHEN, Shuangquan SHAO. Simulation study of thermal management system of alkaline water electrolysis device for hydrogen production [J]. CIESC Journal, 2023, 74(S1): 320-328. |
[2] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[3] | Zehao MI, Er HUA. DFT and COSMO-RS theoretical analysis of SO2 absorption by polyamines type ionic liquids [J]. CIESC Journal, 2023, 74(9): 3681-3696. |
[4] | Yan GAO, Peng WU, Chao SHANG, Zejun HU, Xiaodong CHEN. Preparation of magnetic agarose microspheres based on a two-fluid nozzle and their protein adsorption properties [J]. CIESC Journal, 2023, 74(8): 3457-3471. |
[5] | Bingchun SHENG, Jianguo YU, Sen LIN. Study on lithium resource separation from underground brine with high concentration of sodium by aluminum-based lithium adsorbent [J]. CIESC Journal, 2023, 74(8): 3375-3385. |
[6] | Xingzhi HU, Haoyan ZHANG, Jingkun ZHUANG, Yuqing FAN, Kaiyin ZHANG, Jun XIANG. Preparation and microwave absorption properties of carbon nanofibers embedded with ultra-small CeO2 nanoparticles [J]. CIESC Journal, 2023, 74(8): 3584-3596. |
[7] | Jie WANG, Xiaolin QIU, Ye ZHAO, Xinyang LIU, Zhongqiang HAN, Yong XU, Wenhan JIANG. Preparation and properties of polyelectrolyte electrostatic deposition modified PHBV antioxidant films [J]. CIESC Journal, 2023, 74(7): 3068-3078. |
[8] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[9] | Xinyue WANG, Junjie WANG, Sixian CAO, Cui WANG, Lingkun LI, Hongyu WU, Jing HAN, Hao WU. Effect of glass primary container surface modification on monoclonal antibody aggregates induced by mechanical stress [J]. CIESC Journal, 2023, 74(6): 2580-2588. |
[10] | Caihong LIN, Li WANG, Yu WU, Peng LIU, Jiangfeng YANG, Jinping LI. Effect of alkali cations in zeolites on adsorption and separation of CO2/N2O [J]. CIESC Journal, 2023, 74(5): 2013-2021. |
[11] | Yongyao SUN, Qiuying GAO, Wenguang ZENG, Jiaming WANG, Yifei CHEN, Yongzhe ZHOU, Gaohong HE, Xuehua RUAN. Design and optimization of membrane-based integration process for advanced utilization of associated gases in N2-EOR oilfields [J]. CIESC Journal, 2023, 74(5): 2034-2045. |
[12] | Chenxin LI, Yanqiu PAN, Liu HE, Yabin NIU, Lu YU. Carbon membrane model based on carbon microcrystal structure and its gas separation simulation [J]. CIESC Journal, 2023, 74(5): 2057-2066. |
[13] | Shaoyun CHEN, Dong XU, Long CHEN, Yu ZHANG, Yuanfang ZHANG, Qingliang YOU, Chenglong HU, Jian CHEN. Preparation and adsorption properties of monolayer polyaniline microsphere arrays [J]. CIESC Journal, 2023, 74(5): 2228-2238. |
[14] | Lei WANG, Lei WANG, Yunlong BAI, Liuliu HE. Preparation of SA lithium ion sieve membrane and its adsorptive properties [J]. CIESC Journal, 2023, 74(5): 2046-2056. |
[15] | Mujin LI, Song HU, Depan SHI, Peng ZHAO, Rui GAO, Jinlong LI. A process for offgas absorption and purification of 1,2-butylene oxide [J]. CIESC Journal, 2023, 74(4): 1607-1618. |
Viewed | ||||||||||||||||||||||
Full text 1010
|
|
|||||||||||||||||||||
Abstract 254
|
|
|||||||||||||||||||||