CIESC Journal ›› 2023, Vol. 74 ›› Issue (9): 3841-3854.DOI: 10.11949/0438-1157.20230729
• Process system engineering • Previous Articles Next Articles
Yue CAO1(), Chong YU2, Zhi LI1(
), Minglei YANG1(
)
Received:
2023-07-13
Revised:
2023-09-03
Online:
2023-11-20
Published:
2023-09-25
Contact:
Zhi LI, Minglei YANG
通讯作者:
李智,杨明磊
作者简介:
曹跃(1992—),男,博士,助理研究员,ycao@ecust.edu.cn
基金资助:
CLC Number:
Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit[J]. CIESC Journal, 2023, 74(9): 3841-3854.
曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854.
方法 | 最佳簇数下的最佳轮廓系数 |
---|---|
heursure | 0.8562 |
rigrsure | 0.8427 |
sqtwolog | 0.8565 |
minimaxi | 0.8550 |
Table 1 Cluster silhouette coefficient after denoising by different threshold methods
方法 | 最佳簇数下的最佳轮廓系数 |
---|---|
heursure | 0.8562 |
rigrsure | 0.8427 |
sqtwolog | 0.8565 |
minimaxi | 0.8550 |
方法 | 相关性系数 |
---|---|
Gaussian | 0.9269 |
movmean | 0.893 |
Tabel 2 Comparison between processed and original signals by different smoothing methods
方法 | 相关性系数 |
---|---|
Gaussian | 0.9269 |
movmean | 0.893 |
方法 | 过渡状态1 | 过渡状态2 | 过渡状态3 | 过渡状态4 |
---|---|---|---|---|
经典K-means聚类 | 901~1140 | 3375~3383 | 3355~3366 | 6578~6747 |
1189~1226 | 3431~3441 | 3452~3465 | 6938~6956 | |
1889~2013 | 4060~4084 | 3491~3562 | 7217~7193 | |
2641~3354 | 4426~4439 | 3846~3930 | 7172~7268 | |
3466~3490 | 4939~4967 | 3970~4041 | 7280~7422 | |
3563~3845 | 5360~5379 | 4451~4500 | 7513~7533 | |
9306~9798 | 5462~5480 | 4689~4741 | 7624~7730 | |
6171~6370 | 4986~5009 | 7987~8085 | ||
6485~6497 | 5205~5334 | 8461~8486 | ||
6869~6924 | 5548~5559 | 8532~8655 | ||
7544~7582 | 5767~5812 | 8708~8788 | ||
8113~8157 | 5991~6015 | 8885~8918 | ||
9227~9255 | 6090~6142 | |||
9282~9305 | ||||
层次聚类 | 900~1142 | 3376~3382 | 3355~3375 | 6398~6405 |
1190~1228 | 3432~3440 | 3441~3466 | 6534~6546 | |
1887~2015 | 4063~4082 | 3489~3563 | 6571~6751 | |
2639~3354 | 4427~4437 | 3845~4062 | 6937~6953 | |
3467~3488 | 4943~4964 | 4438~4942 | 7175~7195 | |
3564~3844 | 5362~5377 | 4970~5361 | 7214~7415 | |
9307~9799 | 5464~5478 | 5479~6174 | 7517~7534 | |
6175~6367 | 9253~9306 | 7619~7739 | ||
6871~6922 | 7985~8087 | |||
7546~7579 | 8454~8490 | |||
8116~8152 | 8527~8658 | |||
9229~9252 | 8703~8799 | |||
8881~8920 | ||||
方法 本文所提 | 850~1256 | 3310~3591 | 3842~4097 | 6821~6982 |
1845~2040 | 9166~9344 | 4382~4518 | 7140~7201 | |
2613~2673 | 5333~5506 | 7486~8189 | ||
9762~9902 | 6151~6529 |
Table 3 Detection results of transition states
方法 | 过渡状态1 | 过渡状态2 | 过渡状态3 | 过渡状态4 |
---|---|---|---|---|
经典K-means聚类 | 901~1140 | 3375~3383 | 3355~3366 | 6578~6747 |
1189~1226 | 3431~3441 | 3452~3465 | 6938~6956 | |
1889~2013 | 4060~4084 | 3491~3562 | 7217~7193 | |
2641~3354 | 4426~4439 | 3846~3930 | 7172~7268 | |
3466~3490 | 4939~4967 | 3970~4041 | 7280~7422 | |
3563~3845 | 5360~5379 | 4451~4500 | 7513~7533 | |
9306~9798 | 5462~5480 | 4689~4741 | 7624~7730 | |
6171~6370 | 4986~5009 | 7987~8085 | ||
6485~6497 | 5205~5334 | 8461~8486 | ||
6869~6924 | 5548~5559 | 8532~8655 | ||
7544~7582 | 5767~5812 | 8708~8788 | ||
8113~8157 | 5991~6015 | 8885~8918 | ||
9227~9255 | 6090~6142 | |||
9282~9305 | ||||
层次聚类 | 900~1142 | 3376~3382 | 3355~3375 | 6398~6405 |
1190~1228 | 3432~3440 | 3441~3466 | 6534~6546 | |
1887~2015 | 4063~4082 | 3489~3563 | 6571~6751 | |
2639~3354 | 4427~4437 | 3845~4062 | 6937~6953 | |
3467~3488 | 4943~4964 | 4438~4942 | 7175~7195 | |
3564~3844 | 5362~5377 | 4970~5361 | 7214~7415 | |
9307~9799 | 5464~5478 | 5479~6174 | 7517~7534 | |
6175~6367 | 9253~9306 | 7619~7739 | ||
6871~6922 | 7985~8087 | |||
7546~7579 | 8454~8490 | |||
8116~8152 | 8527~8658 | |||
9229~9252 | 8703~8799 | |||
8881~8920 | ||||
方法 本文所提 | 850~1256 | 3310~3591 | 3842~4097 | 6821~6982 |
1845~2040 | 9166~9344 | 4382~4518 | 7140~7201 | |
2613~2673 | 5333~5506 | 7486~8189 | ||
9762~9902 | 6151~6529 |
1 | 姚立松, 许红香. 加氢裂化装置在压减柴油中的作用分析[J]. 石油炼制与化工, 2023, 54(3): 20-24. |
Yao L S, Xu H X. Function analysis of hydrocracking unit in reducing diesel production[J]. Petroleum Processing and Petrochemicals, 2023, 54(3): 20-24. | |
2 | 徐春明, 杨朝合. 石油炼制工程[M]. 4版. 北京: 石油工业出版社, 2009. |
Xu C M, Yang Z H. Petroleum Refining Engineering[M]. 4th ed. Beijing: Petroleum Industry Press, 2009. | |
3 | Cao Y, Jan N M, Huang B, et al. Multimodal process monitoring based on variational Bayesian PCA and Kullback-Leibler divergence between mixture models[J]. Chemometrics and Intelligent Laboratory Systems, 2021, 210: 104230. |
4 | 王啸. 多模态工业过程的过渡模态故障监测方法研究[D]. 沈阳: 东北大学, 2015. |
Wang X. Research on monitoring methods about transition process in multi-modal industrial process[D]. Shenyang: Northeastern University, 2015. | |
5 | Zhang K, Peng K X, Zhao S S, et al. A novel feature-extraction-based process monitoring method for multimode processes with common features and its applications to a rolling process[J]. IEEE Transactions on Industrial Informatics, 2021, 17(9): 6466-6475. |
6 | Jiang Q C, Yan X F. Multimode process monitoring using variational Bayesian inference and canonical correlation analysis[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16(4): 1814-1824. |
7 | 葛志强. 复杂工况过程统计监测方法研究[D]. 杭州: 浙江大学, 2009. |
Ge Z Q. Statistical process monitoring methods for complex processes[D]. Hangzhou: Zhejiang University, 2009. | |
8 | Huang K K, Wei K, Li F B, et al. LSTM-MPC: a deep learning based predictive control method for multimode process control[J]. IEEE Transactions on Industrial Electronics, 2023, 70(11): 11544-11554. |
9 | Watil A, El Magri A, Lajouad R, et al. Multi-mode control strategy for a stand-alone wind energy conversion system with battery energy storage[J]. Journal of Energy Storage, 2022, 51: 104481. |
10 | 周东华, 王庆林. 基于模型的控制系统故障诊断技术的最新进展[J]. 自动化学报, 1995, 21(2): 244-248. |
Zhou D H, Wang Q L. The latest development of model based fault diagnostics technique of control systems[J]. Acta Automatica Sinica, 1995, 21(2): 244-248. | |
11 | Li W, Zhong X, Shao H D, et al. Multi-mode data augmentation and fault diagnosis of rotating machinery using modified ACGAN designed with new framework[J]. Advanced Engineering Informatics, 2022, 52: 101552. |
12 | Kodamana H, Raveendran R, Huang B. Mixtures of probabilistic PCA with common structure latent bases for process monitoring[J]. IEEE Transactions on Control Systems Technology, 2017, 27(2): 838-846. |
13 | Yu J, Qin S J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models[J]. AIChE Journal, 2008, 54(7): 1811-1829. |
14 | Song B, Shi H B, Ma Y X, et al. Multisubspace principal component analysis with local outlier factor for multimode process monitoring[J]. Industrial & Engineering Chemistry Research, 2014, 53(42): 16453-16464. |
15 | 周新杰, 王建林, 艾兴聪, 等. 基于IDPC-RVM的多模态间歇过程质量变量在线预测[J]. 化工学报, 2022, 73(7): 3120-3130. |
Zhou X J, Wang J L, Ai X C, et al. IDPC-RVM based online prediction of quality variables for multimode batch processes[J]. CIESC Journal, 2022, 73(7): 3120-3130. | |
16 | 刘伟旻, 王建林, 邱科鹏, 等. 基于DHSC的多模态间歇过程测量数据异常检测方法[J]. 化工学报, 2017, 68(11): 4201-4207. |
Liu W M, Wang J L, Qiu K P, et al. Method for detecting abnormal data in multimode batch processes based on dynamic hypersphere structure change[J]. CIESC Journal, 2017, 68(11): 4201-4207. | |
17 | 顾幸生, 周冰倩. 基于LNS-DEWKECA算法的多模态工业过程故障检测[J]. 控制与决策, 2020, 35(8): 1879-1886. |
Gu X S, Zhou B Q. Multimodal industrial process fault detection based on LNS-DEWKECA[J]. Control and Decision, 2020, 35(8): 1879-1886. | |
18 | Cao Y, Jan N M, Huang B, et al. No-delay multimodal process monitoring using Kullback-Leibler divergence-based statistics in probabilistic mixture models[J]. IEEE Transactions on Automation Science and Engineering, 2023, 20(1): 167-178. |
19 | 徐莹, 邓晓刚, 钟娜. 基于ICA混合模型的多工况过程故障诊断方法[J]. 化工学报, 2016, 67(9): 3793-3803. |
Xu Y, Deng X G, Zhong N. A fault diagnosis method for multimode processes based on ICA mixture models[J]. CIESC Journal, 2016, 67(9): 3793-3803. | |
20 | 朱红林, 王帆, 侍洪波, 等. 基于非负矩阵分解的多模态过程故障监测方法[J]. 化工学报, 2016, 67(5): 1973-1981. |
Zhu H L, Wang F, Shi H B, et al. Fault detection method based on non-negative matrix factorization for multimode processes[J]. CIESC Journal, 2016, 67(5): 1973-1981. | |
21 | Fang M Q, Kodamana H, Huang B, et al. A novel approach to process operating mode diagnosis using conditional random fields in the presence of missing data[J]. Computers & Chemical Engineering, 2018, 111: 149-163. |
22 | 李元, 杨东昇, 赵丽颖, 等. 层次变分高斯混合模型与主多项式分析的故障检测策略[J]. 化工学报, 2021, 72(3): 1616-1626. |
Li Y, Yang D S, Zhao L Y, et al. Fault detection using hierarchical variational Gaussian mixture model and principal polynomial analysis[J]. CIESC Journal, 2021, 72(3): 1616-1626. | |
23 | 张淑美, 王福利, 谭帅, 等. 多模态过程的全自动离线模态识别方法[J]. 自动化学报, 2016, 42(1): 60-80. |
Zhang S M, Wang F L, Tan S, et al. A fully automatic offline mode identification method for multi-mode processes[J]. Acta Automatica Sinica, 2016, 42(1): 60-80. | |
24 | Zheng Y, Wang Y, Yan H L, et al. Density peaks clustering-based steady/transition mode identification and monitoring of multimode processes[J]. The Canadian Journal of Chemical Engineering, 2020, 98(10): 2137-2149. |
25 | Bakar Z A, Mohemad R, Ahmad A, et al. A comparative study for outlier detection techniques in data mining[C]//2006 IEEE Conference on Cybernetics and Intelligent Systems. Bangkok, Thailand: IEEE, 2006: 1-6. |
26 | 张淑清, 王力, 李昕. 小波分析在故障监测及诊断中的应用[J]. 传感技术学报, 2001, 14(1): 49-53. |
Zhang S Q, Wang L, Li X. The application of wavelet analysis in fault monitor and diagnosis[J]. Journal of Transcluction Technology, 2001, 14(1): 49-53. | |
27 | 孔国杰, 张培林, 曹建军, 等. 基于提升小波变换的信号降噪及其工程应用[J]. 计算机工程与应用, 2008, 44(10): 234-237. |
Kong G J, Zhang P L, Cao J J, et al. Signal denoising based on lifting wavelet transform and its application[J]. Computer Engineering and Applications, 2008, 44(10): 234-237. | |
28 | Ballabio D. A MATLAB toolbox for principal component analysis and unsupervised exploration of data structure[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 149: 1-9. |
29 | 王千, 王成, 冯振元, 等. K-means聚类算法研究综述[J]. 电子设计工程, 2012, 20(7): 21-24. |
Wang Q, Wang C, Feng Z Y, et al. Review of K-means clustering algorithm[J]. Electronic Design Engineering, 2012, 20(7): 21-24. | |
30 | 管彦周, 万生鹏, 程亚楠, 等. 基于移动方差平均算法的相位敏感光时域反射计去噪算法研究[J]. 仪器仪表学报, 2022, 43(10): 233-240. |
Guan Y Z, Wan S P, Cheng Y N, et al. Research on the denoising algorithm of phase sensitive optical time domain reflectometry based on the moving variance average algorithm[J]. Chinese Journal of Scientific Instrument, 2022, 43(10): 233-240. | |
31 | 姜波. 基于MATLAB的小波降噪研究[J]. 电子制作, 2019, 13: 87-88, 99. |
Jiang B. Research on MATLAB based wavelet denoising[J]. Practical Electronics, 2019, 13: 87-88, 99. | |
32 | 李加升, 黄文清, 戴瑜兴. 基于自定义阈值函数的小波去噪算法[J]. 电力系统保护与控制, 2008, 36(19): 21-24. |
Li J S, Huang W Q, Dai Y X. Wavelet-based power quality disturbances de-noising by customized thresholding[J]. Power System Protection and Control, 2008, 36(19): 21-24. | |
33 | Donoho D L. Progress in Wavelet Analysis and WVD: A 10-Minute Tour[M]//Progress in Wavelet Analysis and Applications. Gif-sur-Yvette: Editions Frontières. 1993. |
34 | 李蝉娟. 高维数据降维处理关键技术研究[D]. 成都: 电子科技大学, 2017. |
Li C J. Research on key technologies of dimensionality reduction of high-dimensional data[D]. Chengdu: University of Electronic Science and Technology of China, 2017. | |
35 | 孙吉贵, 刘杰, 赵连宇. 聚类算法研究[J]. 软件学报, 2008, 19(1): 48-61. |
Sun J G, Liu J, Zhao L Y. Clustering algorithms research[J]. Journal of Software, 2008, 19(1): 48-61. | |
36 | 李先鹏, 吴若男, 王义洋, 等. 融合滑动窗口和MLP-AdaBoost的电力负荷预测[J]. 计算机与数字工程, 2023, 51(1): 66-73. |
Li X P, Wu R N, Wang Y Y, et al. Electric arc furnace load forecasting based on sliding window and MLP-AdaBoost[J]. Computer & Digital Engineering, 2023, 51(1): 66-73. |
[1] | Fei KANG, Weiguang LYU, Feng JU, Zhi SUN. Research on discharge path and evaluation of spent lithium-ion batteries [J]. CIESC Journal, 2023, 74(9): 3903-3911. |
[2] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[3] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[4] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[5] | Guixian LI, Abo CAO, Wenliang MENG, Dongliang WANG, Yong YANG, Huairong ZHOU. Process design and evaluation of CO2 to methanol coupled with SOEC [J]. CIESC Journal, 2023, 74(7): 2999-3009. |
[6] | Guang WANG, Fashun SHAN, Yucheng QIAN, Jianfang JIAO. Incipient fault detection method for chemical process based on ensemble learning transfer entropy [J]. CIESC Journal, 2023, 74(7): 2967-2978. |
[7] | Yuanzhe SHAO, Zhonggai ZHAO, Fei LIU. Quality-related non-stationary process fault detection method by common trends model [J]. CIESC Journal, 2023, 74(6): 2522-2537. |
[8] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[9] | Xiaodan SU, Ganyu ZHU, Huiquan LI, Guangming ZHENG, Ziheng MENG, Fang LI, Yunrui YANG, Benjun XI, Yu CUI. Optimization of wet process phosphoric acid hemihydrate process and crystallization of gypsum [J]. CIESC Journal, 2023, 74(4): 1805-1817. |
[10] | Xiaoyong GAO, Fuyu HUANG, Wanpeng ZHENG, Diao PENG, Yixu YANG, Dexian HUANG. Scheduling optimization of refinery and chemical production process considering the safety and stability of scheduling operation [J]. CIESC Journal, 2023, 74(4): 1619-1629. |
[11] | Shumin ZHENG, Pengcheng GUO, Jianguo YAN, Shuai WANG, Wenbo LI, Qi ZHOU. Experimental and predictive study on pressure drop of subcooled flow boiling in a mini-channel [J]. CIESC Journal, 2023, 74(4): 1549-1560. |
[12] | Zhongqiu ZHANG, Hongguang LI, Yilin SHI. A multi-task learning approach for complex chemical processes based on manual predictive manipulating strategies [J]. CIESC Journal, 2023, 74(3): 1195-1204. |
[13] | Jianghuai ZHANG, Zhong ZHAO. Robust minimum covariance constrained control for C3 hydrogenation process and application [J]. CIESC Journal, 2023, 74(3): 1216-1227. |
[14] | Xuerong GU, Shuoshi LIU, Siyu YANG. Research on multi-parameter optimization method based on parallel EGO and surrogate-assisted model [J]. CIESC Journal, 2023, 74(3): 1205-1215. |
[15] | Sheng’an ZHANG, Guilian LIU. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance [J]. CIESC Journal, 2023, 74(3): 1260-1274. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 900
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 3609
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||