CIESC Journal ›› 2023, Vol. 74 ›› Issue (9): 3855-3864.DOI: 10.11949/0438-1157.20230582
• Process system engineering • Previous Articles Next Articles
Received:
2023-06-16
Revised:
2023-09-02
Online:
2023-11-20
Published:
2023-09-25
Contact:
Zhenlei WANG
通讯作者:
王振雷
作者简介:
王浩(1999—),男,硕士研究生, y30210944@mail.ecust.edu.cn
基金资助:
CLC Number:
Hao WANG, Zhenlei WANG. Model simplification strategy of cracking furnace coking based on adaptive spectroscopy method[J]. CIESC Journal, 2023, 74(9): 3855-3864.
王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864.
参数 | 含义 | 单位 | 参数 | 含义 | 单位 |
---|---|---|---|---|---|
氧反应速率 | 气体密度 | ||||
水蒸气反应速率 | 重力加速度 | ||||
氧气分压 | MPa | 炉管内径 | mm | ||
摩尔气体常数 | J/(mol·K) | 焦层厚度 | mm | ||
炉管内壁温度 | K | 气体比定压热容 | |||
水蒸气分压 | MPa | 气体温度 | K | ||
氧气表面分压 | MPa | 对流传热系数 | |||
水蒸气表面分压 | MPa | 氧的传质系数 | |||
气相质量流量 | 水蒸气的传质系数 | ||||
气体的平均分子量 | kg/kmol | 气体总压 | MPa | ||
几何因数 | — | 综合辐射系数 | W/(m2·g·K4) | ||
黑体辐射系数 | W/(m2·g·K4) | 介质流动速度 | m/s | ||
焦炭密度 | 炉管外径 | mm |
Table 1 Parameter description
参数 | 含义 | 单位 | 参数 | 含义 | 单位 |
---|---|---|---|---|---|
氧反应速率 | 气体密度 | ||||
水蒸气反应速率 | 重力加速度 | ||||
氧气分压 | MPa | 炉管内径 | mm | ||
摩尔气体常数 | J/(mol·K) | 焦层厚度 | mm | ||
炉管内壁温度 | K | 气体比定压热容 | |||
水蒸气分压 | MPa | 气体温度 | K | ||
氧气表面分压 | MPa | 对流传热系数 | |||
水蒸气表面分压 | MPa | 氧的传质系数 | |||
气相质量流量 | 水蒸气的传质系数 | ||||
气体的平均分子量 | kg/kmol | 气体总压 | MPa | ||
几何因数 | — | 综合辐射系数 | W/(m2·g·K4) | ||
黑体辐射系数 | W/(m2·g·K4) | 介质流动速度 | m/s | ||
焦炭密度 | 炉管外径 | mm |
方法 | 温度分布最大误差/K | 温度分布最大相对误差/% | 焦层厚度分布最大误差/mm | 焦层厚度分布最大相对误差/% |
---|---|---|---|---|
谱方法 | 11.42338 | 1.05285 | 0.10773 | 15.03873 |
自适应谱方法 | 1.69512 | 0.15623 | 3.41223×10-3 | 0.47633 |
Table 2 Modeling error of spectral method and adaptive spectral method
方法 | 温度分布最大误差/K | 温度分布最大相对误差/% | 焦层厚度分布最大误差/mm | 焦层厚度分布最大相对误差/% |
---|---|---|---|---|
谱方法 | 11.42338 | 1.05285 | 0.10773 | 15.03873 |
自适应谱方法 | 1.69512 | 0.15623 | 3.41223×10-3 | 0.47633 |
项目 | 最大误差 | 最大相对 误差 | 入口管有焦段始端最大误差 | 出口管有焦段始端最大误差 |
---|---|---|---|---|
温度分布/K | 1.69512 | 0.15623% | 1.69512 | 0.66372 |
焦层厚度 分布/mm | 0.00617 | 0.12851% | 7.00860×10-3 | 3.63016×10-4 |
Table 3 Modeling error of adaptive spectral method
项目 | 最大误差 | 最大相对 误差 | 入口管有焦段始端最大误差 | 出口管有焦段始端最大误差 |
---|---|---|---|---|
温度分布/K | 1.69512 | 0.15623% | 1.69512 | 0.66372 |
焦层厚度 分布/mm | 0.00617 | 0.12851% | 7.00860×10-3 | 3.63016×10-4 |
1 | 曹晨鑫, 杜玉鹏, 王昕, 等. 基于Ms-LWPLS的化工过程网络化性能分级评估方法[J]. 化工学报, 2019, 70(S1): 141-149. |
Cao C X, Du Y P, Wang X, et al. Networked grading performance assessment method of chemical process based on Ms-LWPLS[J]. CIESC Journal, 2019, 70(S1): 141-149. | |
2 | 江伟, 王昕, 王振雷. 基于LTSA和MICA与PCA联合指标的过程监控方法及应用[J]. 化工学报, 2015, 66(12): 4895-4903. |
Jiang W, Wang X, Wang Z L. LTSA and combined index based MICA and PCA process monitoring and application[J]. CIESC Journal, 2015, 66(12): 4895-4903. | |
3 | 李平, 李奇安, 雷荣孝, 等. 乙烯裂解炉先进控制系统开发与应用[J]. 化工学报, 2011, 62(8): 2216-2220. |
Li P, Li Q A, Lei R X, et al. Development and application of advanced process control system for ethylene cracking heaters[J]. CIESC Journal, 2011, 62(8): 2216-2220. | |
4 | 诸泽人. 裂解炉结焦抑制及清焦技术[J]. 乙烯工业, 2014, 26(2): 51-55, 6. |
Zhu Z R. Coke inhibiting and decoking technologies for ethylene cracking furnaces[J]. Ethylene Industry, 2014, 26(2): 51-55, 6. | |
5 | 陈德坤. 大型乙烯裂解炉烧焦过程中COT随机分布系统建模与控制研究[D]. 北京: 北京化工大学, 2021. |
Chen D K. Study on modeling and control of COT random distribution system during coking of large ethylene cracking furnace[D]. Beijing: Beijing University of Chemical Technology, 2021. | |
6 | 张莹莹. 乙烷裂解炉烧焦过程安全区的计算与优化操作的模拟[D]. 天津: 天津大学, 2009. |
Zhang Y Y. Calculation of safety zone and simulation of optimal operation in the coking process of ethane cracking furnace[D]. Tianjin: Tianjin University, 2009. | |
7 | 万鑫, 赵众. 大型乙烯工业裂解炉烧焦过程COT分布最小方差协方差约束控制[J]. 北京化工大学学报(自然科学版), 2022, 49(5): 91-100. |
Wan X, Zhao Z. Minimum variance covariance constraint control of COT distribution in coking process of large ethylene industrial cracking furnace[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2022, 49(5): 91-100. | |
8 | 郝晓娜. 乙烯裂解炉烧焦过程的模拟、应用与优化控制[D]. 北京: 北京化工大学, 2013. |
Hao X N. Simulation, application and optimal control of coke burning process in ethylene cracking furnace[D]. Beijing: Beijing University of Chemical Technology, 2013. | |
9 | Schools E M, Froment G F. Simulation of decoking of thermal cracking coils by steam/air-mixtures[J]. AIChE Journal, 1997, 43(1): 118-126. |
10 | Heynderickx G J, Schools E M, Marin G B. Simulation of the decoking of an ethane cracker with a steam/air mixture[J]. Chemical Engineering Science, 2006, 61(6): 1779-1789. |
11 | 智茂轩. 乙烯装置裂解炉的烧焦过程模拟[J]. 乙烯工业, 2020, 32(2): 34-37, 5. |
Zhi M X. Simulation of coke burning process of cracking furnace in ethylene plant[J]. Ethylene Industry, 2020, 32(2): 34-37, 5. | |
12 | Zhu L, Fan Q B. Solving fractional nonlinear Fredholm integro-differential equations by the second kind Chebyshev wavelet[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(6): 2333-2341. |
13 | Qi C K, Li H X. A time/space separation-based Hammerstein modeling approach for nonlinear distributed parameter processes[J]. Computers & Chemical Engineering, 2009, 33(7): 1247-1260. |
14 | 华晨, 李柠, 李少远. 分布参数系统的时空ARX建模及预测控制[J]. 控制理论与应用, 2011, 28(12): 1711-1716. |
Hua C, Li N, Li S Y. Time-space ARX modeling and predictive control for distributed parameter system[J]. Control Theory & Applications, 2011, 28(12): 1711-1716. | |
15 | Xu B W, Lu X J. Spatiotemporal kernel-local-embedding modeling approach for nonlinear distributed parameter systems[J]. Journal of Process Control, 2022, 119: 101-114. |
16 | 熊善海. 管式乙烯裂解炉清焦的模拟与控制[D]. 北京: 北京化工大学, 2016. |
Xiong S H. Simulation and control of coke cleaning in tubular ethylene cracking furnace[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
17 | 张丽娜, 杨春信. 基于分布参数的管内传热和热力学[J]. 化工学报, 2008, 59(12): 2978-2984. |
Zhang L N, Yang C X. Heat transfer and thermodynamic analysis of internal flow based on distributed parameter model[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(12): 2978-2984. | |
18 | Morton K W, Mayers D F. Numerical Solution of Partial Differential Equations: an Introduction[M]. 2nd ed. Cambridge: Cambridge University Press, 2005. |
19 | Butkovskii A G. Green’s Functions and Transfer Functions Handbook[M]. New York: Halsted Press, 1982. |
20 | Ray W H. Advanced Process Control[M]. New York: McGraw-Hill Companies, 1981. |
21 | 胡婧玮. 非线性玻尔兹曼方程的傅里叶谱方法[J]. 计算数学, 2022, 44(3): 289-304. |
Hu J W. Fourier spectral methods for nonlinear Boltzmann equations[J]. Mathematica Numerica Sinica, 2022, 44(3): 289-304. | |
22 | 唐斯琴. 两类方程的稳定化时间间断Galerkin时空有限元方法[D]. 呼和浩特: 内蒙古大学, 2019. |
Tang S Q. Stabilized time discontinuous Galerkin space-time finite element method for two kinds of equations[D]. Hohhot: Inner Mongolia University, 2019. | |
23 | Lutgen J P. Eigenvalue accumulation for singular Sturm-Liouville problems nonlinear in the spectral parameter[J]. Journal of Differential Equations, 1999, 159(2): 515-542. |
24 | Alzahrani S S, Khaliq A Q M. High-order time stepping Fourier spectral method for multi-dimensional space-fractional reaction-diffusion equations[J]. Computers & Mathematics with Applications, 2019, 77(3): 615-630. |
25 | Singh H, Akhavan Ghassabzadeh F, Tohidi E, et al. Legendre spectral method for the fractional Bratu problem[J]. Mathematical Methods in the Applied Sciences, 2020, 43(9): 5941-5952. |
26 | Huang Y X, Zhao Y, Cao D Q. Bending and free vibration analysis of orthotropic in-plane functionally graded plates using a Chebyshev spectral approach[J]. Composite Structures, 2021, 255: 112938. |
27 | 李彦超. 乙烯裂解炉的建模及其多目标优化[D]. 北京: 北京化工大学, 2013. |
Li Y C. Modeling and multi-objective optimization of ethylene cracking furnace[D]. Beijing: Beijing University of Chemical Technology, 2013. | |
28 | 崔芸菲. 乙烯裂解动力学优化建模与应用研究[D]. 北京: 北京化工大学, 2012. |
Cui Y F. Study on optimization modeling and application of ethylene cracking kinetics[D]. Beijing: Beijing University of Chemical Technology, 2012. | |
29 | 胡贵华, 隆建, 杜文莉. 考虑汽化影响的乙烯裂解炉对流段数值模拟[J]. 华东理工大学学报(自然科学版), 2019, 45(5): 719-727. |
Hu G H, Long J, Du W L. Numerical simulation of convection section of ethylene cracking furnace considering evaporation effect[J]. Journal of East China University of Science and Technology, 2019, 45(5): 719-727. | |
30 | 张凡. 乙烯裂解炉内燃烧、流动、传热及裂解反应特性数值模拟研究[D]. 北京: 中国石油大学(北京), 2017. |
Zhang F. Numerical simulation study on combustion, flow, heat transfer and cracking reaction characteristics in ethylene cracking furnace[D]. Beijing: China University of Petroleum, 2017. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 485
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 205
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||