CIESC Journal ›› 2023, Vol. 74 ›› Issue (10): 4063-4073.DOI: 10.11949/0438-1157.20230870
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Daoyin LIU(), Zhiheng FAN, Jiliang MA, Xiaoping CHEN
Received:
2023-08-22
Revised:
2023-10-10
Online:
2023-12-22
Published:
2023-10-25
Contact:
Daoyin LIU
通讯作者:
刘道银
作者简介:
刘道银(1982—),男,博士,副教授,dyliu@seu.edu.cn
基金资助:
CLC Number:
Daoyin LIU, Zhiheng FAN, Jiliang MA, Xiaoping CHEN. Direct numerical simulation of restitution coefficient during oblique collision of wet particles[J]. CIESC Journal, 2023, 74(10): 4063-4073.
刘道银, 范志恒, 马吉亮, 陈晓平. 湿颗粒倾斜碰撞恢复系数的直接数值模拟[J]. 化工学报, 2023, 74(10): 4063-4073.
Add to citation manager EndNote|Ris|BibTeX
参数 | 数值 |
---|---|
气体密度/(kg/m3) | 1.225 |
气体黏度/(Pa·s) | 1.789×10-5 |
液体密度/(kg/m3) | 827 |
液体黏度/(Pa·s) | 0.185 |
液膜厚度/mm | 2 |
表面张力系数/(N/m) | 0.029 |
背景区域/mm | 6×6×10 |
前景区域/mm | 2.6 |
接触角(下落)/(°) | 150 |
接触角(返回)/(°) | 30 |
干颗粒碰撞恢复系数 | 0.853 |
Courant数 | 0.12 |
Table 1 Simulation parameters of collision of the particle-plate liquid film case
参数 | 数值 |
---|---|
气体密度/(kg/m3) | 1.225 |
气体黏度/(Pa·s) | 1.789×10-5 |
液体密度/(kg/m3) | 827 |
液体黏度/(Pa·s) | 0.185 |
液膜厚度/mm | 2 |
表面张力系数/(N/m) | 0.029 |
背景区域/mm | 6×6×10 |
前景区域/mm | 2.6 |
接触角(下落)/(°) | 150 |
接触角(返回)/(°) | 30 |
干颗粒碰撞恢复系数 | 0.853 |
Courant数 | 0.12 |
Fig.3 Dynamics of particle and liquid bridge during oblique collision at the bench condition (particle diameter 2 mm, droplet diameter 0.4 mm, liquid viscosity 500 mPa·s, collision velocity 1.5 m/s, and collision angle 60°)
Fig.5 Variation of particle normal relative velocity and tangential relative velocity with time at different collision angles (liquid viscosity 500 mPa·s and collision velocity 1.5 m/s)
Fig.7 Effects of liquid viscosity on the rupture behavior of liquid bridge during the oblique collision (collision velocity 1.5 m/s and collision angle 60°)
Fig.8 Variation of particle normal relative velocity, tangential relative velocity, and rotational angular velocity with time in oblique collisions with different liquid viscosities and effect of liquid viscosity on the coefficient of restitution (collision velocity 1.5 m/s and collision angle 60°)
Fig.9 Effect of collision velocity on the rupture behavior of liquid bridge during the oblique collision (liquid viscosity 500 mPa·s and collision angle 60°)
Fig.10 Variation of particle normal relative velocity, tangential relative velocity, and rotational angular velocity with time in oblique collisions with different collision velocities and effect of collision velocity on the coefficient of restitution (liquid viscosity 500 mPa·s and collision angle 60°)
1 | 谢恒来, 吴曼, 赵军, 等. 导向管喷动流化床中废弃印刷线路板的非金属颗粒包覆改性[J]. 化工学报, 2015, 66(3): 1185-1193. |
Xie H L, Wu M, Zhao J, et al. Coating modification of non-metal particles of waste printed circuit boards in spout-fluid bed with draft tube[J]. CIESC Journal, 2015, 66(3): 1185-1193. | |
2 | Wang C, Liu D Y, Ma J L, et al. Characterization of coating shells in a Wurster fluidized bed under different drying conditions and solution viscosities[J]. Powder Technology, 2022, 411: 117914. |
3 | 唐天琪, 何玉荣. 磁场对湿颗粒流化床系统中介尺度结构影响机制研究[J]. 化工学报, 2022, 73(6): 2636-2648. |
Tang T Q, He Y R. Effect of magnetic field on the mesoscale structure evolution process in a wet particle fluidized bed[J]. CIESC Journal, 2022, 73(6): 2636-2648. | |
4 | 李雪, 东明, 张璜, 等. 潮湿环境下微尺度颗粒撞击平板的动力学研究[J]. 化工学报, 2022, 73(5): 1940-1946. |
Li X, Dong M, Zhang H, et al. Kinetic characteristics of micro-particle impact on a flat surface under humidity conditions[J]. CIESC Journal, 2022, 73(5): 1940-1946. | |
5 | Wu D L, Zhou P, Wang G, et al. A theoretical study of particle coalescence criteria for inelastic collisions of wet particles[J]. Chemical Engineering Science, 2021, 243: 116770. |
6 | 焦杨, 章新喜, 孔凡成, 等. 湿颗粒聚团碰撞解聚过程的离散元法模拟[J]. 物理学报, 2015, 64(15): 328-337. |
Jiao Y, Zhang X X, Kong F C, et al. Discrete element simulation of impact disaggregation for wet granule agglomerate[J]. Acta Physica Sinica, 2015, 64(15): 328-337. | |
7 | Zhuang J D, Ju Y S. A combined experimental and numerical modeling study of the deformation and rupture of axisymmetric liquid bridges under coaxial stretching[J]. Langmuir, 2015, 31(37): 10173-10182. |
8 | Xiao F, Jing J Q, Kuang S B, et al. Capillary forces on wet particles with a liquid bridge transition from convex to concave[J]. Powder Technology, 2020, 363: 59-73. |
9 | Darabi P, Li T W, Pougatch K, et al. Modeling the evolution and rupture of stretching pendular liquid bridges[J]. Chemical Engineering Science, 2010, 65(15): 4472-4483. |
10 | Lian G P, Seville J. The capillary bridge between two spheres: new closed-form equations in a two century old problem[J]. Advances in Colloid and Interface Science, 2016, 227: 53-62. |
11 | Di Renzo A, Picarelli G, Di Maio F P. Numerical investigation of funicular liquid bridge interactions between spherical particles[J]. Chemical Engineering & Technology, 2020, 43(5): 830-837. |
12 | Sun X S, Sakai M. Direct numerical simulation of gas-solid-liquid flows with capillary effects: an application to liquid bridge forces between spherical particles[J]. Physical Review E, 2016, 94(6): 063301. |
13 | Davis R H, Serayssol J M, Hinch E J. The elastohydrodynamic collision of two spheres[J]. Journal of Fluid Mechanics, 1986, 163: 479-497. |
14 | Gollwitzer F, Rehberg I, Kruelle C A, et al. Coefficient of restitution for wet particles[J]. Physical Review E, 2012, 86: 011303. |
15 | Sutkar V S, Deen N G, Padding J T, et al. A novel approach to determine wet restitution coefficients through a unified correlation and energy analysis[J]. AIChE Journal, 2015, 61(3): 769-779. |
16 | Crüger B, Salikov V, Heinrich S, et al. Coefficient of restitution for particles impacting on wet surfaces: an improved experimental approach[J]. Particuology, 2016, 25: 1-9. |
17 | Ma J L, Liu D Y, Chen X P. Theoretical model for normal impact between dry sphere and liquid layer with considerable thickness[J]. Aerosol and Air Quality Research, 2016, 16(7): 1533-1540. |
18 | Buck B, Heinrich S. Collision dynamics of wet particles: comparison of literature models to new experiments[J]. Advanced Powder Technology, 2019, 30(12): 3241-3252. |
19 | Buck B, Lunewski J, Tang Y L, et al. Numerical investigation of collision dynamics of wet particles via force balance[J]. Chemical Engineering Research and Design, 2018, 132: 1143-1159. |
20 | Jain D, Deen N G, Kuipers J A M, et al. Direct numerical simulation of particle impact on thin liquid films using a combined volume of fluid and immersed boundary method[J]. Chemical Engineering Science, 2012, 69(1): 530-540. |
21 | Antonyuk S, Heinrich S, Deen N, et al. Influence of liquid layers on energy absorption during particle impact[J]. Particuology, 2009, 7(4): 245-259. |
22 | Tang Y L, Kuipers J A M H, Buck B, et al. Interface-resolved simulations of normal collisions of spheres on a wet surface[J]. AIChE Journal, 2017, 63(11): 4774-4787. |
23 | Kan H, Nakamura H, Watano S. Numerical simulation of particle-particle adhesion by dynamic liquid bridge[J]. Chemical Engineering Science, 2015, 138: 607-615. |
24 | Ennis B J, Tardos G, Pfeffer R. A microlevel-based characterization of granulation phenomena[J]. Powder Technology, 1991, 65(1): 257-272. |
25 | Kan H, Nakamura H, Watano S. Effect of droplet size on particle-particle adhesion of colliding particles through droplet[J]. Powder Technology, 2017, 321: 318-325. |
26 | Shao L L, Liu D Y, Ma J L, et al. Normal collision between partially wetted particles by using direct numerical simulation[J]. Chemical Engineering Science, 2022, 247: 117090. |
27 | Donahue C M, Davis R H, Kantak A A, et al. Mechanisms for agglomeration and deagglomeration following oblique collisions of wet particles[J]. Physical Review E, 2012, 86(2): 021303. |
28 | Davis R H, Sitison J W. Oblique collisions of two wetted spheres[J]. Physical Review Fluids, 2020, 5(5): 054305. |
29 | Punch O, Danczyk M, Hawken M, et al. A comparison of pendulum experiments and discrete-element simulations of oblique collisions of wet spheres[J]. AIChE Journal, 2023, 69(3): 17989. |
30 | Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. |
31 | Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. |
32 | Crowe C, Schwarzkopf J, Sommerfeld M, et al. Multiphase Flow with Droplets and Particles[M]. Boca Raton: CRC Press, 2012. |
33 | Ma J L, Liu D Y, Chen X P. Normal and oblique impacts between smooth spheres and liquid layers: liquid bridge and restitution coefficient[J]. Powder Technology, 2016, 301: 747-759. |
34 | Marshall J S, Li S Q. Adhesive Particle Flow: A Discrete-Element Approach[M]. Cambridge: Cambridge University Press, 2014. |
[1] | Zhanyu YE, He SHAN, Zhenyuan XU. Performance simulation of paper folding-like evaporator for solar evaporation systems [J]. CIESC Journal, 2023, 74(S1): 132-140. |
[2] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[3] | Zhiguo WANG, Meng XUE, Yushuang DONG, Tianzhen ZHANG, Xiaokai QIN, Qiang HAN. Numerical simulation and analysis of geothermal rock mass heat flow coupling based on fracture roughness characterization method [J]. CIESC Journal, 2023, 74(S1): 223-234. |
[4] | Jiahao SONG, Wen WANG. Study on coupling operation characteristics of Stirling engine and high temperature heat pipe [J]. CIESC Journal, 2023, 74(S1): 287-294. |
[5] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[6] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[7] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[8] | Xiaosong CHENG, Yonggao YIN, Chunwen CHE. Performance comparison of different working pairs on a liquid desiccant dehumidification system with vacuum regeneration [J]. CIESC Journal, 2023, 74(8): 3494-3501. |
[9] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[10] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[11] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[12] | Kexin HUANG, Tong LI, Anqi LI, Mei LIN. Mode decomposition of flow field in T-junction with rotating impeller [J]. CIESC Journal, 2023, 74(7): 2848-2857. |
[13] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[14] | Jinbo JIANG, Xin PENG, Wenxuan XU, Rixiu MEN, Chang LIU, Xudong PENG. Study on leakage characteristics and parameter influence of pump-out spiral groove oil-gas seal [J]. CIESC Journal, 2023, 74(6): 2538-2554. |
[15] | Xingchi ZHU, Zhiyuan GUO, Zhiyong JI, Jing WANG, Panpan ZHANG, Jie LIU, Yingying ZHAO, Junsheng YUAN. Simulation and optimization of selective electrodialysis magnesium and lithium separation process [J]. CIESC Journal, 2023, 74(6): 2477-2485. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||