CIESC Journal ›› 2023, Vol. 74 ›› Issue (11): 4645-4655.DOI: 10.11949/0438-1157.20230883
• Process system engineering • Previous Articles Next Articles
Xiaoyong GAO1(), Dun LIU1, Chaodong TAN1, Feifei LI2
Received:
2023-08-28
Revised:
2023-11-05
Online:
2024-01-22
Published:
2023-11-25
Contact:
Xiaoyong GAO
通讯作者:
高小永
作者简介:
高小永(1985—),男,博士,副教授,x.gao@cup.edu.cn
基金资助:
CLC Number:
Xiaoyong GAO, Dun LIU, Chaodong TAN, Feifei LI. ALNS-TS based fast optimization algorithm for large-scale maintenance task scheduling[J]. CIESC Journal, 2023, 74(11): 4645-4655.
高小永, 刘顿, 檀朝东, 李菲菲. 基于ALNS-TS的大规模维修任务调度优化快速求解算法[J]. 化工学报, 2023, 74(11): 4645-4655.
分数 | 描述 |
---|---|
经过破坏并修复后,算法得到了新的全局最优解 | |
经过破坏并修复后,尚未接受过的解中有比当前解更优的解存在 | |
经过破坏并修复后,尚未接受过的劣解中有比当前解更差但满足接受准则的解存在 | |
经过破坏并修复后,尚未接受过的劣解中有比当前解更差且不满足接受准则的解存在 |
Table 1 Score adjustment parameter
分数 | 描述 |
---|---|
经过破坏并修复后,算法得到了新的全局最优解 | |
经过破坏并修复后,尚未接受过的解中有比当前解更优的解存在 | |
经过破坏并修复后,尚未接受过的劣解中有比当前解更差但满足接受准则的解存在 | |
经过破坏并修复后,尚未接受过的劣解中有比当前解更差且不满足接受准则的解存在 |
维修任务数量/个 | 创建的节点数/个 | 修剪的节点数/个 | 求解时间/s |
---|---|---|---|
10 | 223 | 109 | 0.65 |
14 | 6935 | 3464 | 11.94 |
18 | 73237 | 36610 | 238.99 |
20 | 406611 | 203282 | 1685.91 |
Table 2 Exact algorithmic solution results for 10, 14, 18 and 20 task cases
维修任务数量/个 | 创建的节点数/个 | 修剪的节点数/个 | 求解时间/s |
---|---|---|---|
10 | 223 | 109 | 0.65 |
14 | 6935 | 3464 | 11.94 |
18 | 73237 | 36610 | 238.99 |
20 | 406611 | 203282 | 1685.91 |
算法 | 10个任务的求解 结果/min | 20个任务的求解 结果/min | 30个任务的求解 结果/min | 60个任务的求解 结果/min | 80个任务的求解 结果/min | 100个任务的求解 结果/min |
---|---|---|---|---|---|---|
精确算法 | 38.00 | 36.90 | — | — | — | — |
遗传算法 | 38.00 | 59.20 | 184.00 | 263.70 | 293.10 | 366.30 |
蚁群算法 | 38.00 | 45.50 | 108.80 | 234.30 | 264.30 | 309.60 |
模拟退火算法 | 38.00 | 49.90 | 153.40 | 285.00 | 324.20 | 447.80 |
Gurobi求解器 | 38.00 | 40.20 | 103.10 | 235.10 | 328.40 | 414.50 |
本文提出算法 | 38.00 | 42.70 | 101.20 | 191.10 | 243.00 | 283.50 |
Table 3 Comparison of objective function values of the solution
算法 | 10个任务的求解 结果/min | 20个任务的求解 结果/min | 30个任务的求解 结果/min | 60个任务的求解 结果/min | 80个任务的求解 结果/min | 100个任务的求解 结果/min |
---|---|---|---|---|---|---|
精确算法 | 38.00 | 36.90 | — | — | — | — |
遗传算法 | 38.00 | 59.20 | 184.00 | 263.70 | 293.10 | 366.30 |
蚁群算法 | 38.00 | 45.50 | 108.80 | 234.30 | 264.30 | 309.60 |
模拟退火算法 | 38.00 | 49.90 | 153.40 | 285.00 | 324.20 | 447.80 |
Gurobi求解器 | 38.00 | 40.20 | 103.10 | 235.10 | 328.40 | 414.50 |
本文提出算法 | 38.00 | 42.70 | 101.20 | 191.10 | 243.00 | 283.50 |
27 | Qian W W, Chai J R, Xu Z G, et al. Differential evolution algorithm with multiple mutation strategies based on roulette wheel selection[J]. Applied Intelligence, 2018, 48(10): 3612-3629. |
28 | Ribeiro G M, Mauri G R, Lorena L A N. A simple and robust simulated annealing algorithm for scheduling workover rigs on onshore oil fields[J]. Computers & Industrial Engineering, 2011, 60(4): 519-526. |
29 | Katoch S, Chauhan S S, Kumar V. A review on genetic algorithm: past, present, and future[J]. Multimedia Tools and Applications, 2021, 80(5): 8091-8126. |
30 | Wang Z P, Tian J C, Feng K P. Optimal allocation of regional water resources based on simulated annealing particle swarm optimization algorithm[J]. Energy Reports, 2022, 8: 9119-9126. |
31 | Zhou X B, Ma H J, Gu J G, et al. Parameter adaptation-based ant colony optimization with dynamic hybrid mechanism[J]. Engineering Applications of Artificial Intelligence, 2022, 114: 105139. |
32 | Nau C, Sankaran P, McConky K. Comparison of parameter tuning strategies for team orienteering problem (TOP) solved with Gurobi[J]. IIE Annual Conference. Proceedings, 2022. |
1 | 夔国凤, 赵越, 谢毅, 等. 多紧急等级复杂维修任务即时调度优化与应用[J]. 化工进展, 2021, 40(11): 6035-6043. |
Kui G F, Zhao Y, Xie Y, et al. Method and application of complex maintenance tasks just-in-time scheduling optimization considering multiple emergency levels[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6035-6043. | |
2 | Bertsimas D, Tsitsiklis J. Simulated annealing[J]. Statistical Science, 1993, 8(1): 10-15. |
3 | Fu Y P, Hou Y S, Wang Z F, et al. Distributed scheduling problems in intelligent manufacturing systems[J]. Tsinghua Science and Technology, 2021, 26(5): 625-645. |
4 | Sahnehsaraei M A, Mahmoodabadi M, Taherkhorsandi M, et al. A hybrid global optimization algorithm: particle swarm optimization in association with a genetic algorithm[J]. Complex System Modelling and Control Through Intelligent Soft Computations, 2015: 45-86. |
5 | Golpîra H, Tirkolaee E B. Stable maintenance tasks scheduling: a bi-objective robust optimization model[J]. Computers & Industrial Engineering, 2019, 137: 106007. |
6 | Achkar V G, Cafaro V G, Méndez C A, et al. Discrete-time MILP formulation for the optimal scheduling of maintenance tasks on oil and gas production assets[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 8231-8245. |
7 | Xu Y J, Han X S, Yang M, et al. Condition-based midterm maintenance scheduling with rescheduling strategy[J]. International Journal of Electrical Power & Energy Systems, 2020, 118: 105796. |
8 | Mira L, Andrade A R, Gomes M C. Maintenance scheduling within rolling stock planning in railway operations under uncertain maintenance durations[J]. Journal of Rail Transport Planning & Management, 2020, 14: 100177. |
9 | Santos I M, Hamacher S, Oliveira F. A data-driven optimization model for the workover rig scheduling problem: case study in an oil company[J]. Computers & Chemical Engineering, 2023, 170: 108088. |
10 | Villagra A, Pandolfi D, Leguizamón G. Handling constraints with an evolutionary tool for scheduling oil wells maintenance visits[J]. Engineering Optimization, 2013, 45(8): 963-981. |
11 | 黄义松, 赵德勇, 李明雨. 基于遗传算法的虚兵火力协同任务规划[J]. 信息系统工程, 2023(3): 77-80. |
Huang Y S, Zhao D Y, Li M Y. Virtual firepower collaborative task planning based on genetic algorithm[J]. China CIO News, 2023(3): 77-80. | |
12 | Tozzo E, Costa A, Lins I. A hybrid multi-objective genetic algorithm for scheduling heterogeneous workover rigs on onshore oil fields[J]. Journal of Petroleum Science and Engineering, 2020, 195: 107935. |
13 | Naseri H, Golroo A, Shokoohi M, et al. Sustainable pavement maintenance and rehabilitation planning using the marine predator optimization algorithm[J]. Structure and Infrastructure Engineering, 2022: 1-13. |
14 | Ribeiro G M, Laporte G, Mauri G R. A comparison of three metaheuristics for the workover rig routing problem[J]. European Journal of Operational Research, 2012, 220(1): 28-36. |
15 | Gao X Y, Peng D, Kui G F, et al. Reinforcement learning based optimization algorithm for maintenance tasks scheduling in coalbed methane gas field[J]. Computers & Chemical Engineering, 2023, 170: 108131. |
16 | Pisinger D, Ropke S. A general heuristic for vehicle routing problems[J]. Computers & Operations Research, 2007, 34(8): 2403-2435. |
17 | 徐倩, 熊俊, 杨珍花, 等. 基于自适应大邻域搜索算法的外卖配送车辆路径优化[J]. 工业工程与管理, 2021, 26(3): 115-122. |
Xu Q, Xiong J, Yang Z H, et al. Route optimization of takeout delivery vehicles based on adaptive large neighborhood search algorithm[J]. Industrial Engineering and Management, 2021, 26(3): 115-122. | |
18 | 南丽君, 陈彦如, 张宗成. 改进的自适应大规模邻域搜索算法求解动态需求的混合车辆路径问题[J]. 计算机应用研究, 2021, 38(10): 2926-2934. |
Nan L J, Chen Y R, Zhang Z C. Improved adaptive large-scale neighborhood search algorithm for solving dynamic demand hybrid vehicle routing problem[J]. Application Research of Computers, 2021, 38(10): 2926-2934. | |
19 | 李晓辉, 李沛帆, 于振宁, 等. 自适应大邻域搜索算法在无人机物流路径规划问题中的应用[J]. 计算机系统应用, 2021, 30(11): 260-265. |
Li X H, Li P F, Yu Z N, et al. Adaptive large neighborhood search algorithm in planning of UAV logistics route[J]. Computer Systems & Applications, 2021, 30(11): 260-265. | |
20 | Alinaghian M, Shokouhi N. Multi-depot multi-compartment vehicle routing problem, solved by a hybrid adaptive large neighborhood search[J]. Omega, 2018, 76: 85-99. |
21 | Chen C, Demir E, Huang Y. An adaptive large neighborhood search heuristic for the vehicle routing problem with time windows and delivery robots[J]. European Journal of Operational Research, 2021, 294(3): 1164-1180. |
22 | Glover F, Laguna M. Tabu Search[M]. New York: Springer US, 1998. |
23 | 符卓, 刘文, 邱萌. 带软时间窗的需求依订单拆分车辆路径问题及其禁忌搜索算法[J]. 中国管理科学, 2017, 25(5): 78-86. |
Fu Z, Liu W, Qiu M. A tabu search algorithm for the vehicle routing problem with soft time windows and split deliveries by order[J]. Chinese Journal of Management Science, 2017, 25(5): 78-86. | |
24 | Mahmud S, Abbasi A, Chakrabortty R K, et al. Multi-operator communication based differential evolution with sequential Tabu Search approach for job shop scheduling problems[J]. Applied Soft Computing, 2021, 108: 107470. |
25 | 白雪骢, 朱焱. 一种基于禁忌搜索算法的流程挖掘方法[J]. 计算机科学, 2016, 43(4): 214-218, 240. |
Bai X C, Zhu Y. Process mining approach based on tabu search algorithm[J]. Computer Science, 2016, 43(4): 214-218, 240. | |
26 | Shaw P. Using constraint programming and local search methods to solve vehicle routing problems[M]//Maher M, Puget J F. Principles and Practice of Constraint Programming-CP98. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998: 417-431. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Yue CAO, Chong YU, Zhi LI, Minglei YANG. Industrial data driven transition state detection with multi-mode switching of a hydrocracking unit [J]. CIESC Journal, 2023, 74(9): 3841-3854. |
[3] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[4] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[5] | Gang YIN, Yihui LI, Fei HE, Wenqi CAO, Min WANG, Feiya YAN, Yu XIANG, Jian LU, Bin LUO, Runting LU. Early warning method of aluminum reduction cell leakage accident based on KPCA and SVM [J]. CIESC Journal, 2023, 74(8): 3419-3428. |
[6] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[7] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[8] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[9] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[10] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
[11] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[12] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[13] | Zedong WANG, Zhiping SHI, Liyan LIU. Numerical simulation and optimization of acoustic streaming considering inhomogeneous bubble cloud dissipation in rectangular reactor [J]. CIESC Journal, 2023, 74(5): 1965-1973. |
[14] | Chunlei ZHAO, Liang GUO, Cong GAO, Wei SONG, Jing WU, Jia LIU, Liming LIU, Xiulai CHEN. Metabolic engineering of Escherichia coli for chondroitin production [J]. CIESC Journal, 2023, 74(5): 2111-2122. |
[15] | Xiaoyong GAO, Fuyu HUANG, Wanpeng ZHENG, Diao PENG, Yixu YANG, Dexian HUANG. Scheduling optimization of refinery and chemical production process considering the safety and stability of scheduling operation [J]. CIESC Journal, 2023, 74(4): 1619-1629. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 597
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||