CIESC Journal ›› 2023, Vol. 74 ›› Issue (11): 4433-4444.DOI: 10.11949/0438-1157.20230958
• Reviews and monographs • Previous Articles Next Articles
Zhuangzhuang LIU1(), Ran JU2, Chongtao LIU2, Jianchao SONG2, Yangyang LI1, Houkai WU2, Tong LI2(), Xiuping TAO2()
Received:
2023-09-14
Revised:
2023-10-16
Online:
2024-01-22
Published:
2023-11-25
Contact:
Tong LI, Xiuping TAO
刘壮壮1(), 鞠然2, 刘崇涛2, 宋建超2, 李洋洋1, 吴厚凯2, 李同2(), 陶秀萍2()
通讯作者:
李同,陶秀萍
作者简介:
刘壮壮(1998—),男,硕士研究生,liu17861521711@163.com
基金资助:
CLC Number:
Zhuangzhuang LIU, Ran JU, Chongtao LIU, Jianchao SONG, Yangyang LI, Houkai WU, Tong LI, Xiuping TAO. Strategies for performance enhancement of electrochemical membrane bioreactors for wastewater treatment and current research status[J]. CIESC Journal, 2023, 74(11): 4433-4444.
刘壮壮, 鞠然, 刘崇涛, 宋建超, 李洋洋, 吴厚凯, 李同, 陶秀萍. 电化学膜生物反应器处理污水性能提升策略及研究现状[J]. 化工学报, 2023, 74(11): 4433-4444.
Add to citation manager EndNote|Ris|BibTeX
类型 | 体积/L | 水力停留时间/h | 进水浓度/(mg·L-1) | 污染物去除率/% | 产电性能 | 减轻膜污染 | 文献 |
---|---|---|---|---|---|---|---|
分离式 | MFC:0.2 MBR:8 | 10 | COD:436 NH | COD:92 NH | 电压:0.43 V MPD:1.02 W·m-3 CE:5.9% | 否 | [ |
分离式 | MFC:0.9 MBR:6 | 8 | COD:287 | COD:87 | 电压:0.52 V MPD:2.57 W·m-3 CE:8.56% | 是 | [ |
分离式 | MFC:2.2 MBR:17 | 8 | COD:368 NH | COD:96 NH | 电压:0.74 V MPD:0.21 W·m-3 CE:10% | 是 | [ |
分离式 | MFC:1.4 MBR:1.1 | 14 | COD:2066 NH TN:38 | COD:96 NH TN:87 | 电压:0.66 V MPD:0.22 W·m-3 | 否 | [ |
纯膜型 | 2.08 | 8.6 | COD:400 | COD:90 | 电压:0.65 V MDP:5.96 W·m-3 CE:1.4% | 否 | [ |
纯膜型 | 1.4 | 10 | COD:305 NH TN:52 | COD:88 NH TN:69 | 电压:0.24 V MPD:0.79 W·m-3 | 是 | [ |
纯膜型 | 12.24 | 8.2 | COD:420 NH TN:33 | COD:95 NH TN:36 | 电压:0.15 V MPD:2.18 W·m-3 CE:1.9% | 是 | [ |
纯膜型 | 55 | 15.3 | COD:408 TN:53 | COD:97 TN:78 | MPD:2.15 W·m-3 CE:0.24% | 否 | [ |
膜阴极型 | 2.5 | 2.5 | COD:283 NH | COD:92 NH | 电压:0.25 V MPD:4.35 W·m-3 CE:8.2% | 是 | [ |
膜阴极型 | 2.5 | 3.6 | COD:283 NH | COD:93.7 NH | 电压:0.52 V MPD:4.34 W·m-3 CE:0.9% | 是 | [ |
膜阴极型 | 3.9 | 12.9 | COD:550 NH | COD:90 NH | 电压:0.5 V MPD:1.36 W·m-3 CE:7% | 是 | [ |
膜阴极型 | 12.8 | 12.7 | COD:650 NH TN:37 | COD:93 NH TN:74 | 电压:0.47 V MPD:0.56 W·m-3 CE:1% | 是 | [ |
膜阴极型 | 6.48 | 24 | COD:380 TN:40 | COD:96 TN:63 | 电压:0.5 V MPD:0.3 W·m-3 CE:1.5% | 是 | [ |
膜空气阴极型 | 0.04 | 48 | COD:1080 NH | COD:97 NH | 电压:0.3 V MPD:6.8 W·m-3 CE:8.5% | 是 | [ |
膜空气阴极型 | 0.12 | 14.5 | COD:292 NH | COD:89 NH | 电压:0.79 V MPD:7.4 W·m-3 CE:36% | 是 | [ |
膜空气阴极型 | 0.028 | 68.3 | COD:400 NH TN:58 | COD:97 NH TN:94 | 电压:0.22 V MPD:8.75 W·m-3 CE:25.6% | 是 | [ |
Table 1 Effectiveness of EMBR in removing pollutants from wastewater, electricity generation performance and membrane fouling situation
类型 | 体积/L | 水力停留时间/h | 进水浓度/(mg·L-1) | 污染物去除率/% | 产电性能 | 减轻膜污染 | 文献 |
---|---|---|---|---|---|---|---|
分离式 | MFC:0.2 MBR:8 | 10 | COD:436 NH | COD:92 NH | 电压:0.43 V MPD:1.02 W·m-3 CE:5.9% | 否 | [ |
分离式 | MFC:0.9 MBR:6 | 8 | COD:287 | COD:87 | 电压:0.52 V MPD:2.57 W·m-3 CE:8.56% | 是 | [ |
分离式 | MFC:2.2 MBR:17 | 8 | COD:368 NH | COD:96 NH | 电压:0.74 V MPD:0.21 W·m-3 CE:10% | 是 | [ |
分离式 | MFC:1.4 MBR:1.1 | 14 | COD:2066 NH TN:38 | COD:96 NH TN:87 | 电压:0.66 V MPD:0.22 W·m-3 | 否 | [ |
纯膜型 | 2.08 | 8.6 | COD:400 | COD:90 | 电压:0.65 V MDP:5.96 W·m-3 CE:1.4% | 否 | [ |
纯膜型 | 1.4 | 10 | COD:305 NH TN:52 | COD:88 NH TN:69 | 电压:0.24 V MPD:0.79 W·m-3 | 是 | [ |
纯膜型 | 12.24 | 8.2 | COD:420 NH TN:33 | COD:95 NH TN:36 | 电压:0.15 V MPD:2.18 W·m-3 CE:1.9% | 是 | [ |
纯膜型 | 55 | 15.3 | COD:408 TN:53 | COD:97 TN:78 | MPD:2.15 W·m-3 CE:0.24% | 否 | [ |
膜阴极型 | 2.5 | 2.5 | COD:283 NH | COD:92 NH | 电压:0.25 V MPD:4.35 W·m-3 CE:8.2% | 是 | [ |
膜阴极型 | 2.5 | 3.6 | COD:283 NH | COD:93.7 NH | 电压:0.52 V MPD:4.34 W·m-3 CE:0.9% | 是 | [ |
膜阴极型 | 3.9 | 12.9 | COD:550 NH | COD:90 NH | 电压:0.5 V MPD:1.36 W·m-3 CE:7% | 是 | [ |
膜阴极型 | 12.8 | 12.7 | COD:650 NH TN:37 | COD:93 NH TN:74 | 电压:0.47 V MPD:0.56 W·m-3 CE:1% | 是 | [ |
膜阴极型 | 6.48 | 24 | COD:380 TN:40 | COD:96 TN:63 | 电压:0.5 V MPD:0.3 W·m-3 CE:1.5% | 是 | [ |
膜空气阴极型 | 0.04 | 48 | COD:1080 NH | COD:97 NH | 电压:0.3 V MPD:6.8 W·m-3 CE:8.5% | 是 | [ |
膜空气阴极型 | 0.12 | 14.5 | COD:292 NH | COD:89 NH | 电压:0.79 V MPD:7.4 W·m-3 CE:36% | 是 | [ |
膜空气阴极型 | 0.028 | 68.3 | COD:400 NH TN:58 | COD:97 NH TN:94 | 电压:0.22 V MPD:8.75 W·m-3 CE:25.6% | 是 | [ |
1 | 中华人民共和国生态环境部, 国家统计局, 中华人民共和国农业农村部. 第二次全国污染源普查公报[EB/OL]. (2020-06-08) [2021-12-07]. . |
Ministry of Ecology and Environment of the People's Republic of China, National Bureau of Statistics, Ministry of Agriculture and Rural Affairs of the People's Republic of China. Bulletin of the Second National Pollution Source Census[EB/OL]. (2020-06-08) [2021-12-07]. . | |
2 | Yang Y, Li B, Li T, et al. A review of treatment technologies for acid mine drainage and sustainability assessment[J]. Journal of Water Process Engineering, 2023, 55: 104213. |
3 | Yang W B, Cicek N, Ilg J. State-of-the-art of membrane bioreactors: worldwide research and commercial applications in North America[J]. Journal of Membrane Science, 2006, 270(1/2): 201-211. |
4 | Zheng Y, Zhang W X, Tang B, et al. Membrane fouling mechanism of biofilm-membrane bioreactor (BF-MBR): pore blocking model and membrane cleaning[J]. Bioresource Technology, 2018, 250: 398-405. |
5 | Akamatsu K, Lu W, Sugawara T, et al. Development of a novel fouling suppression system in membrane bioreactors using an intermittent electric field[J]. Water Research, 2010, 44(3): 825-830. |
6 | Sarkar B, Pal S, Ghosh T B, et al. A study of electric field enhanced ultrafiltration of synthetic fruit juice and optical quantification of gel deposition[J]. Journal of Membrane Science, 2008, 311(1/2): 112-120. |
7 | Logan B E, Hamelers B, Rozendal R, et al. Microbial fuel cells: methodology and technology[J]. Environmental Science & Technology, 2006, 40(17): 5181-5192. |
8 | Franks A E, Nevin K P. Microbial fuel cells, a current review[J]. Energies, 2010, 3(5): 899-919. |
9 | Wang Y K, Sheng G P, Li W W, et al. Development of a novel bioelectrochemical membrane reactor for wastewater treatment[J]. Environmental Science & Technology, 2011, 45(21): 9256-9261. |
10 | Wang J, Bi F H, Ngo H H, et al. Evaluation of energy-distribution of a hybrid microbial fuel cell-membrane bioreactor (MFC-MBR) for cost-effective wastewater treatment[J]. Bioresource Technology, 2016, 200: 420-425. |
11 | 应贤斌, 黄利杰, 汪锐, 等. 基于微生物燃料电池的新型膜生物反应器研究进展[J]. 化工进展, 2019, 38(12): 5557-5564. |
Ying X B, Huang L J, Wang R, et al. Research progress of novel membrane bioreactor based on microbial fuel cell[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5557-5564. | |
12 | Wang Y P, Liu X W, Li W W, et al. A microbial fuel cell-membrane bioreactor integrated system for cost-effective wastewater treatment[J]. Applied Energy, 2012, 98: 230-235. |
13 | Ma J X, Wang Z W, He D, et al. Long-term investigation of a novel electrochemical membrane bioreactor for low-strength municipal wastewater treatment[J]. Water Research, 2015, 78: 98-110. |
14 | Cheng B A, Wang J, Liu W B, et al. Membrane fouling reduction in a cost-effective integrated system of microbial fuel cell and membrane bioreactor[J]. Water Science and Technology, 2017, 76(3): 653-661. |
15 | Modin O, Fukushi K, Rabaey K, et al. Bioelectrochemical hydrogen peroxide production—an opportunity for sustainable mitigation of membrane bioreactor fouling[J]. Proceedings of the Water Environment Federation, 2010(7): 309-321. |
16 | Gao C F, Liu L F, Yang F L. Development of a novel proton exchange membrane-free integrated MFC system with electric membrane bioreactor and air contact oxidation bed for efficient and energy-saving wastewater treatment[J]. Bioresource Technology, 2017, 238: 472-483. |
17 | Zhao F, Harnisch F, Schröder U, et al. Challenges and constraints of using oxygen cathodes in microbial fuel cells[J]. Environmental Science & Technology, 2006, 40(17): 5193-5199. |
18 | Huang L H, Li X F, Ren Y P, et al. Preparation of conductive microfiltration membrane and its performance in a coupled configuration of membrane bioreactor with microbial fuel cell[J]. RSC Advances, 2017, 7(34): 20824-20832. |
19 | Park Y, Park S, Nguyen V K, et al. Complete nitrogen removal by simultaneous nitrification and denitrification in flat-panel air-cathode microbial fuel cells treating domestic wastewater[J]. Chemical Engineering Journal, 2017, 316: 673-679. |
20 | 张政, 侯彬, 高广超. MFC-MBR 耦合系统研究进展[J]. 现代化工, 2019, 39(2): 46-50. |
Zhang Z, Hou B, Gao G C. Research progress of MFC-MBR coupling system[J]. Modern Chemical Industry, 2019, 39(2): 46-50. | |
21 | Lv Z S, Chen Y F, Wei H C, et al. One-step electrosynthesis of polypyrrole/graphene oxide composites for microbial fuel cell application[J]. Electrochimica Acta, 2013, 111: 366-373. |
22 | Malaeb L, Katuri K P, Logan B E, et al. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment[J]. Environmental Science & Technology, 2013, 47(20): 11821-11828. |
23 | Tian Y, Li H, Li L P, et al. In-situ integration of microbial fuel cell with hollow-fiber membrane bioreactor for wastewater treatment and membrane fouling mitigation[J]. Biosensors and Bioelectronics, 2015, 64: 189-195. |
24 | Wang Y K, Li W W, Sheng G P, et al. In-situ utilization of generated electricity in an electrochemical membrane bioreactor to mitigate membrane fouling[J]. Water Research, 2013, 47(15): 5794-5800. |
25 | Li Y H, Liu L F, Yang F L, et al. Performance of carbon fiber cathode membrane with C-Mn-Fe-O catalyst in MBR-MFC for wastewater treatment[J]. Journal of Membrane Science, 2015, 484: 27-34. |
26 | Liu J D, Liu L F, Gao B, et al. Integration of bio-electrochemical cell in membrane bioreactor for membrane cathode fouling reduction through electricity generation[J]. Journal of Membrane Science, 2013, 430: 196-202. |
27 | Gao C F, Liu L F, Yang F L. A novel bio-electrochemical system with sand/activated carbon separator, Al anode and bio-anode integrated micro-electrolysis/electro-flocculation cost effectively treated high load wastewater with energy recovery[J]. Bioresource Technology, 2018, 249: 24-34. |
28 | Wang L L, Gu X L, Zhao L Y, et al. ZnO@TiO2 heterostructure arrays/carbon cloth by charge redistribution enhances performance in flexible anode for Li ion batteries[J]. Electrochimica Acta, 2019, 295: 107-112. |
29 | Pu K B, Ma Q, Cai W F, et al. Polypyrrole modified stainless steel as high performance anode of microbial fuel cell[J]. Biochemical Engineering Journal, 2018, 132: 255-261. |
30 | Baudler A, Schmidt I, Langner M, et al. Does it have to be carbon? Metal anodes in microbial fuel cells and related bioelectrochemical systems[J]. Energy & Environmental Science, 2015, 8(7): 2048-2055. |
31 | Zhou X W, Chen X F, Li H Y, et al. Surface oxygen-rich titanium as anode for high performance microbial fuel cell[J]. Electrochimica Acta, 2016, 209: 582-590. |
32 | Mardanpour M M, Yaghmaei S. Characterization of a microfluidic microbial fuel cell as a power generator based on a nickel electrode[J]. Biosensors and Bioelectronics, 2016, 79: 327-333. |
33 | Yang W L, Deng Z J, Wang Y J, et al. Porous boron-doped diamond for efficient electrocatalytic elimination of azo dye orange G[J]. Separation and Purification Technology, 2022, 293: 121100. |
34 | Mohamed H O, Obaid M, Poo K M, et al. Fe/Fe2O3 nanoparticles as anode catalyst for exclusive power generation and degradation of organic compounds using microbial fuel cell[J]. Chemical Engineering Journal, 2018, 349: 800-807. |
35 | Du Y, Ma F X, Xu C Y, et al. Nitrogen-doped carbon nanotubes/reduced graphene oxide nanosheet hybrids towards enhanced cathodic oxygen reduction and power generation of microbial fuel cells[J]. Nano Energy, 2019, 61: 533-539. |
36 | Liu W F, Zhou Z H, Li Z, et al. Cobalt phosphide embedded N-doped carbon nanopolyhedral as an efficient cathode electrocatalyst in microbial fuel cells[J]. Journal of Environmental Chemical Engineering, 2021, 9(1): 104582. |
37 | Wang Y, Zhong K Q, Li H, et al. Bimetallic hybrids modified with carbon nanotubes as cathode catalysts for microbial fuel cell: effective oxygen reduction catalysis and inhibition of biofilm formation[J]. Journal of Power Sources, 2021, 485: 229273. |
38 | Li Y J, Liu L F, Liu J D, et al. PPy/AQS (9, 10-anthraquinone-2-sulfonic acid) and PPy/ARS (alizarin red’s) modified stainless steel mesh as cathode membrane in an integrated MBR/MFC system[J]. Desalination, 2014, 349: 94-101. |
39 | Xu L, Zhao Y Q, Tang C, et al. Influence of glass wool as separator on bioelectricity generation in a constructed wetland-microbial fuel cell[J]. Journal of Environmental Management, 2018, 207: 116-123. |
40 | Liu H, Grot S, Logan B E. Electrochemically assisted microbial production of hydrogen from acetate[J]. Environmental Science & Technology, 2005, 39(11): 4317-4320. |
41 | Santos A, Ma W, Judd S J. Membrane bioreactors: two decades of research and implementation[J]. Desalination, 2011, 273(1): 148-154. |
42 | Orhon D. Evolution of the activated sludge process: the first 50 years[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(4): 608-640. |
43 | Zhou G W, Zhou Y H, Zhou G Q, et al. Assessment of a novel overflow-type electrochemical membrane bioreactor (EMBR) for wastewater treatment, energy recovery and membrane fouling mitigation[J]. Bioresource Technology, 2015, 196: 648-655. |
44 | Wang Y K, Sheng G P, Shi B J, et al. A novel electrochemical membrane bioreactor as a potential net energy producer for sustainable wastewater treatment[J]. Scientific Reports, 2013, 3(1): 1-6. |
45 | Liu J D, Tian C, Jia X L, et al. The brewery wastewater treatment and membrane fouling mitigation strategies in anaerobic baffled anaerobic/aerobic membrane bioreactor[J]. Biochemical Engineering Journal, 2017, 127: 53-59. |
46 | Li J, Luo S, He Z. Cathodic fluidized granular activated carbon assisted-membrane bioelectrochemical reactor for wastewater treatment[J]. Separation and Purification Technology, 2016, 169: 241-246. |
47 | 刘晓宇. 曝气和微电场相互作用对MBR膜污染缓解机理的研究[D]. 太原: 中北大学, 2022. |
Liu X Y. Study on membrane fouling mitigation mechanism of MBR by interaction aeration and micro-electric field[D]. Taiyuan: North University of China, 2022. | |
48 | Meng F G, Yang F L, Shi B Q, et al. A comprehensive study on membrane fouling in submerged membrane bioreactors operated under different aeration intensities[J]. Separation and Purification Technology, 2008, 59(1): 91-100. |
49 | González del Campo A, Cañizares P, Lobato J, et al. Effects of external resistance on microbial fuel cell’s performance[M]//The Handbook of Environmental Chemistry. Cham: Springer International Publishing, 2014: 175-197. |
50 | Pinto R P, Srinivasan B, Guiot S R, et al. The effect of real-time external resistance optimization on microbial fuel cell performance[J]. Water Research, 2011, 45(4): 1571-1578. |
51 | Zhang P Y, Liu Z L. Experimental study of the microbial fuel cell internal resistance[J]. Journal of Power Sources, 2010, 195(24): 8013-8018. |
52 | Corbella C, Puigagut J. Improving domestic wastewater treatment efficiency with constructed wetland microbial fuel cells: influence of anode material and external resistance[J]. Science of the Total Environment, 2018, 631/632: 1406-1414. |
53 | Su X Y, Tian Y, Sun Z C, et al. Performance of a combined system of microbial fuel cell and membrane bioreactor: wastewater treatment, sludge reduction, energy recovery and membrane fouling[J]. Biosensors and Bioelectronics, 2013, 49: 92-98. |
54 | Zhao S, Yun H, Khan A, et al. Two-stage microbial fuel cell (MFC) and membrane bioreactor (MBR) system for enhancing wastewater treatment and resource recovery based on MFC as a biosensor[J]. Environmental Research, 2022, 204: 112089. |
55 | 迪世靖, 左薇, 王德震, 等. 一体式MFC-好氧MBR运行效果及膜污染特性[J]. 环境工程学报, 2014, 8(4): 1367-1372. |
Di S J, Zuo W, Wang D Z, et al. Performance and membrane fouling characteristics in a membrane bioreactor coupled with microbial fuel cell system[J]. Chinese Journal of Environmental Engineering, 2014, 8(4): 1367-1372. | |
56 | Xu L, Zhang G Q, Yuan G E, et al. Anti-fouling performance and mechanism of anthraquinone/polypyrrole composite modified membrane cathode in a novel MFC-aerobic MBR coupled system[J]. RSC Advances, 2015, 5(29): 22533-22543. |
57 | 周翔, 吕娜, 李秀芬, 等. Cu-NWs/RGO/PVDF导电微滤膜的制备及其抗污染性能[J]. 环境工程学报, 2022, 16(1): 281-291. |
Zhou X, Lyu N, Li X F, et al. Preparation of Cu-NWs/RGO/PVDF conductive microfiltration membrane and its anti-pollution performance[J]. Chinese Journal of Environmental Engineering, 2022, 16(1): 281-291. | |
58 | Yan H J, Saito T, Regan J M. Nitrogen removal in a single-chamber microbial fuel cell with nitrifying biofilm enriched at the air cathode[J]. Water Research, 2012, 46(7): 2215-2224. |
59 | Yu J, Park Y, Widyaningsih E, et al. Microbial fuel cells: devices for real wastewater treatment, rather than electricity production[J]. Science of the Total Environment, 2021, 775: 145904. |
60 | Aslam M, Charfi A, Lesage G, et al. Membrane bioreactors for wastewater treatment: a review of mechanical cleaning by scouring agents to control membrane fouling[J]. Chemical Engineering Journal, 2017, 307: 897-913. |
61 | Liu L F, Liu J D, Bo G, et al. Conductive and hydrophilic polypyrrole modified membrane cathodes and fouling reduction in MBR[J]. Journal of Membrane Science, 2013, 429: 252-258. |
62 | Remmas N, Melidis P, Zerva I, et al. Dominance of candidate Saccharibacteria in a membrane bioreactor treating medium age landfill leachate: effects of organic load on microbial communities, hydrolytic potential and extracellular polymeric substances[J]. Bioresource Technology, 2017, 238: 48-56. |
63 | Yao M, Ladewig B, Zhang K S. Identification of the change of soluble microbial products on membrane fouling in membrane bioreactor (MBR)[J]. Desalination, 2011, 278(1/2/3): 126-131. |
64 | Dudchenko A V, Rolf J, Russell K, et al. Organic fouling inhibition on electrically conducting carbon nanotube-polyvinyl alcohol composite ultrafiltration membranes[J]. Journal of Membrane Science, 2014, 468: 1-10. |
65 | Fu L, You S J, Yang F L, et al. Synthesis of hydrogen peroxide in microbial fuel cell[J]. Journal of Chemical Technology & Biotechnology, 2010, 85(5): 715-719. |
66 | Modin O, Fukushi K. Development and testing of bioelectrochemical reactors converting wastewater organics into hydrogen peroxide[J]. Water Science and Technology, 2012, 66(4): 831-836. |
67 | Rozendal R A, Leone E, Keller J, et al. Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system[J]. Electrochemistry Communications, 2009, 11(9): 1752-1755. |
68 | Feng C H, Li F B, Mai H J, et al. Bio-electro-Fenton process driven by microbial fuel cell for wastewater treatment[J]. Environmental Science & Technology, 2010, 44(5): 1875-1880. |
69 | Fu L, You S J, Zhang G Q, et al. Degradation of azo dyes using in-situ Fenton reaction incorporated into H2O2-producing microbial fuel cell[J]. Chemical Engineering Journal, 2010, 160(1): 164-169. |
70 | Zhuang L, Zhou S G, Yuan Y, et al. A novel bioelectro-Fenton system for coupling anodic COD removal with cathodic dye degradation[J]. Chemical Engineering Journal, 2010, 163(1/2): 160-163. |
[1] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[2] | Siqi WANG, Tianyu GU, Xianfu CHEN, Tong WANG, Jia LI, Wei KE, Xiaofeng LI, Yiqun FAN. Study on separation characteristics and membrane fouling mechanism of ceramic membrane for clarification of Eucommia ulmoides leaves extract [J]. CIESC Journal, 2023, 74(3): 1113-1125. |
[3] | Xinxin QI, Hui JIA, Fei GAO, Qi WANG, Yanmei YIN, Jie WANG. In situ monitoring of membrane fouling by electrical impedance tomography based on bilateral array electrodes [J]. CIESC Journal, 2023, 74(11): 4720-4729. |
[4] | Chen CHEN, Qian YANG, Yun CHEN, Rui ZHANG, Dong LIU. Chemical kinetic study on coal volatiles combustion for various oxygen concentrations [J]. CIESC Journal, 2022, 73(9): 4133-4146. |
[5] | Yu FENG, Xin ZHANG, Man ZHANG, Jiancheng WANG, Zhifeng YAN, Fu LI, Pengfei FEI, Jianjun LU, Jie MI. Research progress on the removal of coal based gas pollutants by electrospun fibers [J]. CIESC Journal, 2021, 72(8): 3933-3945. |
[6] | TANG Heli, ZHANG Bing, HUANG Dongmei, SHEN Yu, GAO Xu, SHI Wenxin. Advances in membrane fouling analysis based on XDLVO theory [J]. CIESC Journal, 2021, 72(3): 1230-1241. |
[7] | Da TENG, Tielin LI, Ang LI, Liansuo AN, Guoqing SHEN, Shiping ZHANG. Experimental analysis of low pressure water permeability of single channel ceramic membrane tube [J]. CIESC Journal, 2020, 71(S1): 261-271. |
[8] | Xuehui ZHAO, Xiaole LI, Yang LIU, Yan HU, Qing XU, Hongwei ZHANG. Effect of pH control of KMnO4 solution on physicochemical properties and fouling behavior of PVDF membrane [J]. CIESC Journal, 2020, 71(5): 2401-2412. |
[9] | Cheng FANG, Sheng YANG, Yun WU, Hongwei ZHANG, Jie WANG, Lutian WANG, Songze HAO. Effect of floc surface morphology on membrane pollution prediction [J]. CIESC Journal, 2020, 71(2): 715-723. |
[10] | Ziyi YUAN, Hua FAN, Deyin HOU, Kai WANG, Jun WANG. Effects of sodium dodecyl sulfate in DCMD process [J]. CIESC Journal, 2019, 70(4): 1455-1463. |
[11] | Jianglin WU, Zhaohui ZHANG, Liang WANG, Bin ZHAO, Tengfei LI, Mengmeng CHEN. Analysis of anti-fouling performance of wider spacer RO membrane module [J]. CIESC Journal, 2019, 70(4): 1446-1454. |
[12] | Songze HAO, Hongwei ZHANG, Yun WU, Jie WANG. Study on treatment of biological catalytic filter and membrane fouling with bimetallic catalyst as filter media [J]. CIESC Journal, 2019, 70(11): 4377-4386. |
[13] | CUI Jian, DUAN Lunbo, ZHAO Changsui. Emission characteristics of sulfurous pollutant from circulating fluidized bed boilers co-firing petroleum coke and coal [J]. CIESC Journal, 2018, 69(5): 2158-2165. |
[14] | LIU Qian, ZHONG Wenqi, SU Wei, BEN Haoxi. Oxy-coal combustion kinetics and formation characteristics of pollutants based on TG-MS analysis [J]. CIESC Journal, 2018, 69(1): 523-530. |
[15] | DONG Chang, GAO Qijun, LÜ Xiaolong, JIA Wei. Intensify direct contact membrane distillation process by membrane aeration [J]. CIESC Journal, 2017, 68(5): 1913-1920. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||