CIESC Journal ›› 2021, Vol. 72 ›› Issue (8): 3933-3945.DOI: 10.11949/0438-1157.20201843
• Reviews and monographs • Previous Articles Next Articles
Yu FENG1,2,3(),Xin ZHANG2,Man ZHANG2,Jiancheng WANG1,Zhifeng YAN2,Fu LI2,Pengfei FEI2,Jianjun LU1,2,Jie MI1()
Received:
2020-12-16
Revised:
2021-03-30
Online:
2021-08-05
Published:
2021-08-05
Contact:
Yu FENG,Jie MI
冯宇1,2,3(),张鑫2,张曼2,王建成1,阎智锋2,李甫2,费鹏飞2,卢建军1,2,米杰1()
通讯作者:
冯宇,米杰
作者简介:
冯宇(1991—),男,博士,讲师,基金资助:
CLC Number:
Yu FENG, Xin ZHANG, Man ZHANG, Jiancheng WANG, Zhifeng YAN, Fu LI, Pengfei FEI, Jianjun LU, Jie MI. Research progress on the removal of coal based gas pollutants by electrospun fibers[J]. CIESC Journal, 2021, 72(8): 3933-3945.
冯宇, 张鑫, 张曼, 王建成, 阎智锋, 李甫, 费鹏飞, 卢建军, 米杰. 静电纺丝纤维对煤基气体污染物脱除研究进展[J]. 化工学报, 2021, 72(8): 3933-3945.
Add to citation manager EndNote|Ris|BibTeX
1 | Chan C K, Yao X H. Air pollution in mega cities in China[J]. Atmospheric Environment, 2008, 42(1): 1-42. |
2 | 潘玲颖, 麻林巍, 周喆, 等. 2030年中国煤电SO2和NOx排放总量的情况研究[J]. 动力工程学报, 2010, 30(5): 378-383. |
Pan L Y, Ma L W, Zhou Z, et al. Scenario analysis on total SO2 and NOx emission of China's coal-fired power plants in 2030[J]. Journal of Chinese Society of Power Engineering, 2010, 30(5): 378-383. | |
3 | 何秋生, 范晓周, 王新明, 等. 煤焦化过程中颗粒物和二氧化硫的释放[J]. 地球与环境, 2007, 35(3): 279-283. |
He Q S, Fan X Z, Wang X M, et al. Emissions of TSP and sulfur dioxide(SO2) from coal coking process[J]. Earth and Environment, 2007, 35(3): 279-283. | |
4 | 王志刚, 陶兆勇, 段贤勇, 等. 天然气净化厂SO2减排技术的应用及讨论[J]. 天然气与石油, 2017, 35(1): 60-63, 10. |
Wang Z G, Tao Z Y, Duan X Y, et al. Application and discussion on SO2 emission reduction technology of natural gas purification plant[J]. Natural Gas and Oil, 2017, 35(1): 60-63, 10. | |
5 | Gholami F, Tomas M, Gholami Z, et al. Technologies for the nitrogen oxides reduction from flue gas: a review[J]. Science of the Total Environment, 2020, 714: 136712. |
6 | Ghose M K. Meeting the challenges of sustainable development of energy through clean coal technologies[J]. TIDEE (TERI Information Digest on Energy & Environment), 2013, 12(2): 169-182. |
7 | Im S I, Lee K B. Novel sorption-enhanced methanation with simultaneous CO2 removal for the production of synthetic natural gas[J]. Industrial & Engineering Chemistry Research, 2016, 55(34): 9244-9255. |
8 | 张国莲, 陈廷. 纳米纤维的研究现状及其应用[J]. 纺织导报, 2005, (1): 12-16, 18. |
Zhang G L, Chen T. The research and application of nanometer fiber[J]. China Textile Leader, 2005, (1): 12-16, 18. | |
9 | Perez-Puyana V, Jiménez-Rosado M, Romero A, et al. Development of PVA/gelatin nanofibrous scaffolds for tissue engineering via electrospinning[J]. Materials Research Express, 2018, 5(3): 035401. |
10 | Si Y, Tang X M, Yu J Y, et al. Electrospun nanofibers: solving global issues[M]//Nanostructure Science and Technology. Berlin, Heidelberg: Springer, 2014: 3-38. |
11 | Chan S, Jankovic J, Susac D, et al. Electrospun carbon nanofiber catalyst layers for polymer electrolyte membrane fuel cells: structure and performance[J]. Journal of Power Sources, 2018, 392: 239-250. |
12 | Liu H, Gough C R, Deng Q Q, et al. Recent advances in electrospun sustainable composites for biomedical, environmental, energy, and packaging applications[J]. International Journal of Molecular Sciences, 2020, 21(11): 4019. |
13 | Motsoeneng T S, Mokoena T E, Mokhena T C, et al. Application of electrospun materials in filtration and sorbents[M]//Electrospun Materials and Their Allied Applications. Wiley Scrivener Publishing, 2020: 401-414. |
14 | Yi H H, Du C C, Ma Y Q, et al. A novel semi-dry method for the simultaneous removal of Hg and SO2 using spray drying absorption method[J]. Journal of Chemical Technology & Biotechnology, 2020, 95(5): 1431-1440. |
15 | Yang X L, Wang J W, Guo H T, et al. Structural design toward functional materials by electrospinning: a review[J]. e-Polymers, 2020, 20(1): 682-712. |
16 | Ryu H, Park J. Effects of electrospinning parameters on the fiber formation and application[J]. Transactions of the Korean Hydrogen and New Energy Society, 2018, 29(1): 71-80. |
17 | Tan R, Yang X, Shen Y J. Robot-aided electrospinning toward intelligent biomedical engineering[J]. Robotics and Biomimetics, 2017, 4(1): 17. |
18 | 刘呈坤. 静电纺丝技术的研究进展[J]. 合成纤维工业, 2012, 35(2): 53-56. |
Liu C K. Research progress in electrospinning process[J]. China Synthetic Fiber Industry, 2012, 35(2): 53-56. | |
19 | 王艳芝. 静电纺丝技术发展简史及应用[J]. 合成纤维工业, 2018, 41(4): 52-57. |
Wang Y Z. A brief history of electrospinning technology development and application[J]. China Synthetic Fiber Industry, 2018, 41(4): 52-57. | |
20 | Boys C V. On the production, properties, and some suggested uses of the finest threads[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1887, 23(145): 489-499. |
21 | Zeleny J. The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces[J]. Physical Review, 1914, 3(2): 69. |
22 | 葛自良, 毛骏健, 陆汝杰. 液体静电雾化现象及其应用[J]. 自然杂志, 2000, 22(1): 37-41. |
Ge Z L, Mao J J, Lu R J. Liquid atomizing phenomenon subjected to the DC high voltage and its application[J]. Chinese Journal of Nature, 2000, 22(1): 37-41. | |
23 | Bailey A G. Electrostatic spraying of liquids[J]. Physics Bulletin, 1984, 35(4): 146-148. |
24 | Taylor G I. Disintegration of water drops in an electric field[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1964, 280(1382): 383-397. |
25 | Taylor G I. The force exerted by an electric field on a long cylindrical conductor[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1966, 291(1425): 145-158. |
26 | Taylor G I. Electrically driven jets[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1969, 313(1515): 453-475. |
27 | Reneker D H, Yarin A L, Fong H, et al. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning[J]. Journal of Applied Physics, 2000, 87(9): 4531-4547. |
28 | Hohman M M, Shin M, Rutledge G, et al. Electrospinning and electrically forced jets(Ⅰ): Stability theory[J]. Physics of Fluids, 2001, 13(8): 2201-2220. |
29 | Larsen G, Velarde-Ortiz R, Minchow K, et al. A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol-gel chemistry and electrically forced liquid jets[J]. Journal of the American Chemical Society, 2003, 125(5): 1154-1155. |
30 | Li D, Wang Y L, Xia Y N. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays[J]. Nano Letters, 2003, 3(8): 1167-1171. |
31 | Ghorani B, Russell S J, Goswami P. Controlled morphology and mechanical characterisation of electrospun cellulose acetate fibre webs[J]. International Journal of Polymer Science, 2013, 2013: 1-12. |
32 | Wang C, Hashimoto T. Self-organization in electrospun polymer solutions: from dissipative structures to ordered fiber structures through fluctuations[J]. Macromolecules, 2018, 51(12): 4502-4515. |
33 | He J X, Zhou Y M, Qi K, et al. Continuous twisted nanofiber yarns fabricated by double conjugate electrospinning[J]. Fibers and Polymers, 2013, 14(11): 1857-1863. |
34 | Minaei F, Ravandi S A H, Hejazi S M, et al. The fabrication and characterization of casein/PEO nanofibrous yarn via electrospinning[J]. e-Polymers, 2019, 19(1): 154-167. |
35 | Pillay V, Dott C, Choonara Y E, et al. A review of the effect of processing variables on the fabrication of electrospun nanofibers for drug delivery applications[J]. Journal of Nanomaterials, 2013, 2013: 1-22. |
36 | Chowdhury M, Stylios G. Effect of experimental parameters on the morphology of electrospun Nylon 6 fibres[J]. International Journal of Basic & Applied Sciences, 2010, 10(6): 116-131. |
37 | Prabu G T V, Dhurai B. A novel profiled multi-pin electrospinning system for nanofiber production and encapsulation of nanoparticles into nanofibers[J]. Scientific Reports, 2020, 10(1): 4302. |
38 | Haider A, Haider S, Kang I K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology[J]. Arabian Journal of Chemistry, 2018, 11(8): 1165-1188. |
39 | Haider S, Al-Zeghayer Y, Ahmed Ali F A, et al. Highly aligned narrow diameter chitosan electrospun nanofibers[J]. Journal of Polymer Research, 2013, 20(4): 1-11. |
40 | Koski A, Yim K, Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning[J]. Materials Letters, 2004, 58(3/4): 493-497. |
41 | Tan E P S, Ng S Y, Lim C T. Tensile testing of a single ultrafine polymeric fiber[J]. Biomaterials, 2005, 26(13): 1453-1456. |
42 | Burger C, Hsiao B S, Chu B. Nanofibrous materials and their applications[J]. Annual Review of Materials Research, 2006, 36(1): 333-368. |
43 | Xiao S L, Shen M W, Ma H, et al. Fabrication of water-stable electrospun polyacrylic acid-based nanofibrous mats for removal of copper (II) ions in aqueous solution[J]. Journal of Applied Polymer Science, 2010, 116(4): 2409-2417. |
44 | Luzio A, Canesi E V, Bertarelli C, et al. Electrospun polymer fibers for electronic applications[J]. Materials (Basel, Switzerland), 2014, 7(2): 906-947. |
45 | Hayati I, Bailey A I, Tadros T F. Investigations into the mechanisms of electrohydrodynamic spraying of liquids (I): Effect of electric field and the environment on pendant drops and factors affecting the formation of stable jets and atomization[J]. Journal of Colloid and Interface Science, 1987, 117(1): 205-221. |
46 | Yao Y T, Wei H Q, Wang J J, et al. Fabrication of hybrid membrane of electrospun polycaprolactone and polyethylene oxide with shape memory property[J]. Composites Part B: Engineering, 2015, 83: 264-269. |
47 | Okutan N, Terzi P, Altay F. Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers[J]. Food Hydrocolloids, 2014, 39: 19-26. |
48 | Megelski S, Stephens J S, Chase D B, et al. Micro- and nanostructured surface morphology on electrospun polymer fibers[J]. Macromolecules, 2002, 35(22): 8456-8466. |
49 | Bakar S S, Fong K C, Eleyas A, et al. Effect of voltage and flow rate electrospinning parameters on polyacrylonitrile electrospun fibers[J]. IOP Conference Series: Materials Science and Engineering, 2018, 318: 012076. |
50 | Matabola K P, Moutloali R M. The influence of electrospinning parameters on the morphology and diameter of poly(vinyledene fluoride) nanofibers— effect of sodium chloride[J]. Journal of Materials Science, 2013, 48(16): 5475-5482. |
51 | Mo X M, Xu C Y, Kotaki M, et al. Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation[J]. Biomaterials, 2004, 25(10): 1883-1890. |
52 | Zhao S L, Wu X H, Wang L G, et al. Electrospinning of ethyl-cyanoethyl cellulose/tetrahydrofuran solutions[J]. Journal of Applied Polymer Science, 2004, 91(1): 242-246. |
53 | Pelipenko J, Kristl J, Janković B, et al. The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers[J]. International Journal of Pharmaceutics, 2013, 456(1): 125-134. |
54 | Bae H S, Haider A, Selim K M K, et al. Fabrication of highly porous PMMA electrospun fibers and their application in the removal of phenol and iodine[J]. Journal of Polymer Research, 2013, 20(7): 1-7. |
55 | Mit-Uppatham C, Nithitanakul M, Supaphol P. Ultrafine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter[J]. Macromolecular Chemistry and Physics, 2004, 205(17): 2327-2338. |
56 | De Vrieze S, Van Camp T, Nelvig A, et al. The effect of temperature and humidity on electrospinning[J]. Journal of Materials Science, 2009, 44(5): 1357-1362. |
57 | Yang A K, Cai L L, Zhang R F, et al. Thermal management in nanofiber-based face mask[J]. Nano Letters, 2017, 17(6): 3506-3510. |
58 | Liu K, Liu C, Hsu P C, et al. Core-shell nanofibrous materials with high particulate matter removal efficiencies and thermally triggered flame retardant properties[J]. ACS Central Science, 2018, 4(7): 894-898. |
59 | Lee S, Cho A R, Park D, et al. Reusable polybenzimidazole nanofiber membrane filter for highly breathable PM2.5 dust proof mask[J]. ACS Applied Materials & Interfaces, 2019, 11(3): 2750-2757. |
60 | Wang C Y, Wu S Y, Jian M Q, et al. Silk nanofibers as high efficient and lightweight air filter[J]. Nano Research, 2016, 9(9): 2590-2597. |
61 | Liu B W, Zhang S C, Wang X L, et al. Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration[J]. Journal of Colloid and Interface Science, 2015, 457: 203-211. |
62 | Kim S J, Nam Y S, Rhee D M, et al. Preparation and characterization of antimicrobial polycarbonate nanofibrous membrane[J]. European Polymer Journal, 2007, 43(8): 3146-3152. |
63 | Jeong S, Cho H, Han S, et al. High efficiency, transparent, reusable, and active PM2.5 filters by hierarchical Ag nanowire percolation network[J]. Nano Letters, 2017, 17(7): 4339-4346. |
64 | Cho B M, Nam Y S, Cheon J Y, et al. Residual charge and filtration efficiency of polycarbonate fibrous membranes prepared by electrospinning[J]. Journal of Applied Polymer Science, 2015, 132(1): 41340. |
65 | Yeom B Y, Shim E, Pourdeyhimi B. Boehmite nanoparticles incorporated electrospun Nylon-6 nanofiber web for new electret filter media[J]. Macromolecular Research, 2010, 18(9): 884-890. |
66 | 胡敏, 仲兆祥, 邢卫红. 纳米纤维膜在空气净化中的应用研究进展[J]. 化工进展, 2018, 37(4): 1305-1313. |
Hu M, Zhong Z X, Xing W H. Development of nanofiber membrane for air purification[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1305-1313. | |
67 | Leung W F, Hung C H, Yuen P T. Effect of face velocity, nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on a substrate[J]. Separation and Purification Technology, 2010, 71(1): 30-37. |
68 | Selling G W, Woods K K. Improved isolation of zein from corn gluten meal using acetic acid and isolate characterization as solvent[J]. Cereal Chemistry, 2008, 85(2): 202-206. |
69 | Ozden D, Basal G. Polyamide 6/chitosan nanofiber coated HEPA filter for bioaerosol control[J]. Industria Textila, 2017, 68(6): 427-434. |
70 |
Kadam V, Truong Y B, Kyratzis I L, et al. Nanofibres for clean air breathing[J]. Journal of the Institution of Engineers (India): Series E, 2021. doi:10.1007/540034-021-00207-3.
DOI |
71 | Zhang Y F, Guan J M, Wang X F, et al. Balsam-pear-skin-like porous polyacrylonitrile nanofibrous membranes grafted with polyethyleneimine for postcombustion CO2 capture[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 41087-41098. |
72 | Ullah R, Atilhan M, Anaya B, et al. Investigation of ester- and amide-linker-based porous organic polymers for carbon dioxide capture and separation at wide temperatures and pressures[J]. ACS Applied Materials & Interfaces, 2016, 8(32): 20772-20785. |
73 | Fu Y, Wang Z Q, Li S Z, et al. Functionalized covalent triazine frameworks for effective CO2 and SO2 removal[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36002-36009. |
74 | Liu Y Y, Ghimire P, Jaroniec M. Copper benzene-1, 3, 5-tricarboxylate (Cu-BTC) metal-organic framework (MOF) and porous carbon composites as efficient carbon dioxide adsorbents[J]. Journal of Colloid and Interface Science, 2019, 535: 122-132. |
75 | Inonu Z, Keskin S, Erkey C. An emerging family of hybrid nanomaterials: metal-organic framework/aerogel composites[J]. ACS Applied Nano Materials, 2018, 1(11): 5959-5980. |
76 | Querejeta N, García S, Álvarez-Gutiérrez N, et al. Measuring heat capacity of activated carbons for CO2 capture[J]. Journal of CO2 Utilization, 2019, 33: 148-156. |
77 | Iqbal N, Wang X F, Ge J L, et al. Cobalt oxide nanoparticles embedded in flexible carbon nanofibers: attractive material for supercapacitor electrodes and CO2 adsorption[J]. RSC Advances, 2016, 6(57): 52171-52179. |
78 | Ali N, Babar A A, Zhang Y F, et al. Porous, flexible, and core-shell structured carbon nanofibers hybridized by tin oxide nanoparticles for efficient carbon dioxide capture[J]. Journal of Colloid and Interface Science, 2020, 560: 379-387. |
79 | Qu H L, Wei S Y, Guo Z H. Coaxial electrospun nanostructures and their applications[J]. Journal of Materials Chemistry A, 2013, 1(38): 11513. |
80 | Zainab G, Babar A A, Ali N, et al. Electrospun carbon nanofibers with multi-aperture/opening porous hierarchical structure for efficient CO2 adsorption[J]. Journal of Colloid and Interface Science, 2020, 561: 659-667. |
81 | Wang M X, Huang Z H, Shen K, et al. Catalytically oxidation of NO into NO2 at room temperature by graphitized porous nanofibers[J]. Catalysis Today, 2013, 201: 109-114. |
82 | Marani D, Silva R H, Dankeaw A, et al. Effect of the sol-gel conditions on the morphology and SCR performance of electrospun V-W-TiO2 catalysts[J]. Journal of Physics and Chemistry of Solids, 2018, 118: 255-261. |
83 | Gao C, Xiao B, Shi J W, et al. Comprehensive understanding the promoting effect of Dy-doping on MnFeOx nanowires for the low-temperature NH3-SCR of NOx: an experimental and theoretical study[J]. Journal of Catalysis, 2019, 380: 55-67. |
84 | Rodriguez N M, Kim M S, Baker R T K. Carbon nanofibers: a unique catalyst support medium[J]. The Journal of Physical Chemistry, 1994, 98(50): 13108-13111. |
85 | Wang M X, Huang Z H, Shimohara T, et al. NO removal by electrospun porous carbon nanofibers at room temperature[J]. Chemical Engineering Journal, 2011, 170(2/3): 505-511. |
86 | Bajaj B, Joh H I, Jo S M, et al. Enhanced reactive H2S adsorption using carbon nanofibers supported with Cu/CuxO nanoparticles[J]. Applied Surface Science, 2018, 429: 253-257. |
87 | Kim S, Bajaj B, Byun C K, et al. Preparation of flexible zinc oxide/carbon nanofiber webs for mid-temperature desulfurization[J]. Applied Surface Science, 2014, 320: 218-224. |
88 | Ucar N, Alptoğa Ö, Önen A, et al. Improvement of SO2 adsorption capacity of fiber web surface produced from continuous graphene oxide fiber[J]. The Journal of the Textile Institute, 2019, 110(3): 358-367. |
89 | Mochida I, Korai Y, Shirahama M, et al. Removal of SOx and NOx over activated carbon fibers[J]. Carbon, 2000, 38(2): 227-239. |
90 | Song X F, Wang Z J, Li Z Y, et al. Ultrafine porous carbon fibers for SO2 adsorption via electrospinning of polyacrylonitrile solution[J]. Journal of Colloid and Interface Science, 2008, 327(2): 388-392. |
91 | Yang R, Liu J H, Li S M. Preparation and characterization of in-site regenerated TiO2-ACFs photocatalyst[J]. International Journal of Minerals, Metallurgy, and Materials, 2011, 18(3): 357-363. |
92 | Gaur V, Asthana R, Verma N. Removal of SO2 by activated carbon fibers in the presence of O2 and H2O[J]. Carbon, 2006, 44(1): 46-60. |
93 | Yu H Q, Wu Y B, Song T B, et al. Preparation of metal oxide doped ACNFs and their adsorption performance for low concentration SO2[J]. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(11): 1102-1106. |
94 | Zhang X Y, Gao B, Creamer A E, et al. Adsorption of VOCs onto engineered carbon materials: a review[J]. Journal of Hazardous Materials, 2017, 338: 102-123. |
95 | Kadam V, Truong Y B, Easton C, et al. Electrospun polyacrylonitrile/β-cyclodextrin composite membranes for simultaneous air filtration and adsorption of volatile organic compounds[J]. ACS Applied Nano Materials, 2018, 1(8): 4268-4277. |
96 | Blissett R S, Rowson N A. A review of the multi-component utilisation of coal fly ash[J]. Fuel, 2012, 97: 1-23. |
97 | Ge J C, Kim J Y, Yoon S K, et al. Fabrication of low-cost and high-performance coal fly ash nanofibrous membranes via electrospinning for the control of harmful substances[J]. Fuel, 2019, 237: 236-244. |
98 | Kang S M, Hwang J. Fabrication of hollow activated carbon nanofibers (HACNFs) containing manganese oxide catalyst for toluene removal via two-step process of electrospinning and thermal treatment[J]. Chemical Engineering Journal, 2020, 379: 122315. |
[1] | Zhewen CHEN, Junjie WEI, Yuming ZHANG. System integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC [J]. CIESC Journal, 2023, 74(9): 3888-3902. |
[2] | Xuejin YANG, Jintao YANG, Ping NING, Fang WANG, Xiaoshuang SONG, Lijuan JIA, Jiayu FENG. Research progress in dry purification technology of highly toxic gas PH3 [J]. CIESC Journal, 2023, 74(9): 3742-3755. |
[3] | Chen HAN, Youmin SITU, Bin ZHU, Jianliang XU, Xiaolei GUO, Haifeng LIU. Study of reaction and flow characteristics in multi-nozzle pulverized coal gasifier with co-processing of wastewater [J]. CIESC Journal, 2023, 74(8): 3266-3278. |
[4] | Longyi LYU, Wenbo JI, Muda HAN, Weiguang LI, Wenfang GAO, Xiaoyang LIU, Li SUN, Pengfei WANG, Zhijun REN, Guangming ZHANG. Enhanced anaerobic removal of halogenated organic pollutants by iron-based conductive materials: research progress and future perspectives [J]. CIESC Journal, 2023, 74(8): 3193-3202. |
[5] | Bimao ZHOU, Shisen XU, Xiaoxiao WANG, Gang LIU, Xiaoyu LI, Yongqiang REN, Houzhang TAN. Effect of burner bias angle on distribution characteristics of gasifier slag layer [J]. CIESC Journal, 2023, 74(5): 1939-1949. |
[6] | Zefeng GE, Yuqing WU, Mingxun ZENG, Zhenting ZHA, Yuna MA, Zenghui HOU, Huiyan ZHANG. Effect of ash chemical components on biomass gasification properties [J]. CIESC Journal, 2023, 74(5): 2136-2146. |
[7] | Min LI, Xueru YAN, Xinlei LIU. Advances in benzimidazole-linked polymer adsorbents and membranes [J]. CIESC Journal, 2023, 74(2): 599-616. |
[8] | Peng QIU, Yang HAN, Jianliang XU, Fuchen WANG, Zhenghua DAI. Study of EDC parameters for predicting entrained flow coal gasification [J]. CIESC Journal, 2023, 74(1): 428-437. |
[9] | Chen CHEN, Qian YANG, Yun CHEN, Rui ZHANG, Dong LIU. Chemical kinetic study on coal volatiles combustion for various oxygen concentrations [J]. CIESC Journal, 2022, 73(9): 4133-4146. |
[10] | Xingang QI, Libo LU, Yunan CHEN, Zhiwei GE, Liejin GUO. Review of black liquor supercritical water gasification for hydrogen production with high value-added chemicals recovery [J]. CIESC Journal, 2022, 73(8): 3338-3354. |
[11] | Zhenyu LIU. Origin of low productivity of underground coal gasification: diffusion and reaction in stagnant boundary layer and gasification tunnel [J]. CIESC Journal, 2022, 73(8): 3299-3306. |
[12] | Lianfeng ZHU, Chao WANG, Mengjuan ZHANG, Fangzheng LIU, Xin JIA, Ping AN, Guangwen XU, Zhennan HAN. Fluidized bed two-stage gasification of coal with steam/O2 for production of low-tar syngas [J]. CIESC Journal, 2022, 73(8): 3720-3730. |
[13] | Cong YUAN, Ge PU, Jie GAO, Shuaihui JIA. Biomass chemical-looping gasification characteristics of K-modified BaFe2O4 oxygen carrier [J]. CIESC Journal, 2022, 73(3): 1359-1368. |
[14] | Maolin YE, Fenghua TAN, Yuping LI, Yuhe LIAO, Chenguang WANG, Longlong MA. Life cycle environmental impact assessment of mixed alcohol via gasification of agricultural and forestry residues and catalytic synthesis [J]. CIESC Journal, 2022, 73(3): 1369-1378. |
[15] | Meng MA, Yonghui BAI, Juntao WEI, Lunjing YAN, Peng LYU, Jiaofei WANG, Xudong SONG, Weiguang SU, Guangsuo YU. Research and progress of volatile-char interaction during biomass and coal (co-)pyrolysis/gasification process [J]. CIESC Journal, 2022, 73(11): 5186-5200. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||