CIESC Journal ›› 2023, Vol. 74 ›› Issue (11): 4501-4514.DOI: 10.11949/0438-1157.20230936
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Yun LI1,2(), Jie CAO2, Xia HUA1, Huiying WU1()
Received:
2023-09-08
Revised:
2023-10-17
Online:
2024-01-22
Published:
2023-11-25
Contact:
Huiying WU
通讯作者:
吴慧英
作者简介:
李昀(1992—),男,博士,1002942037@sjtu.edu.cn
基金资助:
CLC Number:
Yun LI, Jie CAO, Xia HUA, Huiying WU. Experimental investigation on flow boiling heat transfer characteristics in short flow passage counter-flow microchannels[J]. CIESC Journal, 2023, 74(11): 4501-4514.
李昀, 曹杰, 华夏, 吴慧英. 短程逆流式微通道内的流动沸腾传热特性实验研究[J]. 化工学报, 2023, 74(11): 4501-4514.
Add to citation manager EndNote|Ris|BibTeX
参数 | 不确定度 |
---|---|
流量 | ±2% |
压力 | ±0.04% |
环境温度 | ±2℃ |
测量温度 | ±0.2℃ |
进出口温度 | ±0.2℃ |
电压 | ±0.93% |
电流 | ±1.77% |
热通量 | ±5.79% |
平均传热系数 | ±10.52% |
Table 1 Uncertainties
参数 | 不确定度 |
---|---|
流量 | ±2% |
压力 | ±0.04% |
环境温度 | ±2℃ |
测量温度 | ±0.2℃ |
进出口温度 | ±0.2℃ |
电压 | ±0.93% |
电流 | ±1.77% |
热通量 | ±5.79% |
平均传热系数 | ±10.52% |
1 | 杨振, 姚元鹏, 李昀, 等. 表面活性剂对水过冷池沸腾特性影响实验研究[J]. 化工学报, 2022, 73(3): 1093-1101. |
Yang Z, Yao Y P, Li Y, et al. Experimental study on effect of surfactants on subcooled pool boiling characteristics of pure water working medium[J]. CIESC Journal, 2022, 73(3): 1093-1101. | |
2 | 魏进家, 张永海. 柱状微结构表面强化沸腾换热研究综述[J]. 化工学报, 2016, 67(1): 97-108. |
Wei J J, Zhang Y H. Review of enhanced boiling heat transfer over micro-pin-finned surfaces[J]. CIESC Journal, 2016, 67(1): 97-108. | |
3 | Kim H, Yang H. Electromigration-induced failure of GaN multi-quantum well light emitting diode[J]. Electronics Letters, 2000, 36(10): 908-910. |
4 | 杨建明. 高密度封装电子设备先进热管理技术发展现状[J]. 电子机械工程, 2016, 32(5): 20-24. |
Yang J M. Development status of advanced thermal management technology for high-density packaged electronic equipment[J]. Electro-Mechanical Engineering, 2016, 32(5): 20-24. | |
5 | Kandlikar S G, Colin S, Peles Y, et al. Heat transfer in microchannels—2012 status and research needs[J]. Journal of Heat Transfer, 2013, 135(9): 942-955. |
6 | Garimella S V, Persoons T, Weibel J A, et al. Electronics thermal management in information and communications technologies: challenges and future directions[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2017, 7(8): 1191-1205. |
7 | Ganesan V, Patel R, Hartwig J, et al. Universal critical heat flux (CHF) correlations for cryogenic flow boiling in uniformly heated tubes[J]. International Journal of Heat and Mass Transfer, 2021, 166: 120678. |
8 | Deng D, Zeng L, Sun W. A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks[J]. International Journal of Heat and Mass Transfer, 2021, 175: 121332. |
9 | Tadrist L. Review on two-phase flow instabilities in narrow spaces[J]. International Journal of Heat and Fluid Flow, 2007, 28(1): 54-62. |
10 | 杜保周, 李慧君, 郭保仓, 等. 微肋阵通道流动沸腾换热与压降特性[J]. 化工学报, 2018, 69(12): 4979-4989. |
Du B G, Li H J, Guo B C, et al. Flow boiling heat transfer and pressure drop characteristics in micro channel with micro pin fins[J]. CIESC Journal, 2018, 69(12): 4979-4989. | |
11 | Xia G D, Tang Y X, Zong L X, et al. Experimental investigation of flow boiling characteristics in microchannels with the sinusoidal wavy sidewall[J]. International Communications in Heat and Mass Transfer, 2019, 101: 89-102. |
12 | Cheng X, Yao Y, Wu H. An experimental investigation of flow boiling characteristics in silicon-based groove-wall microchannels with different structural parameters[J]. International Journal of Heat and Mass Transfer, 2021, 168: 120843. |
13 | Lu C T, Pan C. Convective boiling in a parallel microchannel heat sink with a diverging cross section and artificial nucleation sites[J]. Experimental Thermal and Fluid Science, 2011, 35(5): 810-815. |
14 | Drummond K P, Back D, Sinanis M D, et al. A hierarchical manifold microchannel heat sink array for high-heat-flux two-phase cooling of electronics[J]. International Journal of Heat and Mass Transfer, 2018, 117: 319-330. |
15 | 谢洪涛, 李星辰, 绳春晨, 等. 微通道换热器结构及优化设计研究进展[J]. 真空与低温, 2020, 26(4): 310-316. |
Xie H T, Li X C, Sheng C C, et al. Progress in structure and optimal design of microchannel heat sink[J]. Vacuum & Cryogenics, 2020, 26(4): 310-316. | |
16 | Liang G, Mudawar I. Review of channel flow boiling enhancement by surface modification, and instability suppression schemes[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118864. |
17 | Yang F, Dai X, Kuo C J, et al. Enhanced flow boiling in microchannels by self-sustained high frequency two-phase oscillations [J]. International Journal of Heat and Mass Transfer, 2013, 58(1/2): 402-412. |
18 | Li W, Yang F, Alam T, et al. Enhanced flow boiling in microchannels using auxiliary channels and multiple micronozzles (Ⅰ): Characterizations of flow boiling heat transfer[J]. International Journal of Heat and Mass Transfer, 2018, 116: 208-217. |
19 | Li W, Ma J, Alam T, et al. Flow boiling of HFE-7100 in silicon microchannels integrated with multiple micro-nozzles and reentry micro-cavities[J]. International Journal of Heat and Mass Transfer, 2018, 123: 354-366. |
20 | Huang G, Li W, Ma J, et al. High-frequency alternating nucleate boiling of water enabled by microslot arrays in microchannels [J]. International Journal of Heat and Mass Transfer, 2020, 150: 119271. |
21 | Mudawar I. Two-phase microchannel heat sinks: theory, applications, and limitations[J]. Journal of Electronic Packaging, 2011, 133(4): 041002. |
22 | Tibiriçá C B, Ribatski G. Flow boiling in micro-scale channels—synthesized literature review[J]. International Journal of Refrigeration, 2013, 36(2): 301-324. |
23 | Li Y, Wu H Y. Experiment investigation on flow boiling heat transfer in a bidirectional counter-flow microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2022, 187: 122500. |
24 | Li Y, Yao Y P, Wu H Y. Experimental investigation of flow boiling characteristics in counter-flow microchannels with different mass flux distributions[J]. International Journal of Heat and Mass Transfer, 2022, 190: 122768. |
25 | Jiang X, Zhang S, Li Y, et al. High performance heat sink with counter flow diverging microchannels[J]. International Journal of Heat and Mass Transfer, 2020, 162: 120344. |
26 | Li Y, Wu H Y, Yao Y P. Enhanced flow boiling heat transfer and suppressed boiling instability in counter-flow stepped microchannels[J]. International Journal of Heat and Mass Transfer, 2022, 194: 123025 |
27 | Jung K W, Cho E, Lee H, et al. Thermal and manufacturing design considerations for silicon-based embedded microchannel-3D manifold coolers (EMMCs)(Part 1): Experimental study of single-phase cooling performance with R-245fa[J]. Journal of Electronic Packaging, 2020, 142(3): 031117. |
28 | Radwan A, Ookawara S, Ahmed M. Thermal management of concentrator photovoltaic systems using two-phase flow boiling in double-layer microchannel heat sinks[J]. Applied Energy, 2019, 241: 404-419. |
29 | Qu W, Siu-Ho A. Experimental study of saturated flow boiling heat transfer in an array of staggered micro-pin-fins[J]. International Journal of Heat and Mass Transfer, 2009, 52(7/8): 1853-1863. |
30 | Balasubramanian K, Lee P S, Teo C J, et al. Flow boiling heat transfer and pressure drop in stepped fin microchannels[J]. International Journal of Heat and Mass Transfer, 2013, 67: 234-252. |
31 | Lee P S, Garimella S V. Saturated flow boiling heat transfer and pressure drop in silicon microchannel arrays[J]. International Journal of Heat and Mass Transfer, 2008, 51(3/4): 789-806. |
32 | Qu W, Mudawar I. Flow boiling heat transfer in two-phase micro-channel heat sinks(Ⅰ): Experimental investigation and assessment of correlation methods[J]. International Journal of Heat and Mass Transfer, 2003, 46(15): 2755-2771. |
33 | Zuber N, Findlay J A. Average volumetric concentration in two-phase flow systems[J]. Journal of heat transfer, 1965, 87(4): 453-468. |
34 | Li W, Wang Z, Yang F, et al. Supercapillary architecture-activated two-phase boundary layer structures for highly stable and efficient flow boiling heat transfer[J]. Advanced Materials, 2020, 32(2): 1905117. |
35 | Bodla K K, Murthy J Y, Garimella S V. Evaporation analysis in sintered wick microstructures[J]. International Journal of Heat and Mass Transfer, 2013, 61: 729-741. |
36 | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
37 | 李昀, 杨振, 姚元鹏, 等. 流量分配对逆流微通道内流动沸腾影响的研究[J]. 工程热物理学报, 2023, 44(3): 712-719. |
Li Y, Yang Z, Yao Y P, et al. Study on the effect of flow distribution on flow boiling in counter-flow microchannels[J].Journal of Engineering Thermophysics, 2023, 44(3): 712-719. | |
38 | Shah R K, London A L. Laminar Flow Forced Convection in Ducts: a Source Book for Compact Heat Exchanger Analytical Data[M]. New York: Academic Press, 1978. |
39 | Lee P S, Garimella S V. Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratios[J]. International Journal of Heat and Mass Transfer, 2006, 49(17/18): 3060-3067. |
[1] | Ruitao SONG, Pai WANG, Yunpeng WANG, Minxia LI, Chaobin DANG, Zhenguo CHEN, Huan TONG, Jiaqi ZHOU. Numerical simulation of flow boiling heat transfer in pipe arrays of carbon dioxide direct evaporation ice field [J]. CIESC Journal, 2023, 74(S1): 96-103. |
[2] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[3] | Yubing WANG, Jie LI, Hongbo ZHAN, Guangya ZHU, Dalin ZHANG. Experimental study on flow boiling heat transfer of R134a in mini channel with diamond pin fin array [J]. CIESC Journal, 2023, 74(9): 3797-3806. |
[4] | Hai WANG, Hong LIN, Chen WANG, Haojie XU, Lei ZUO, Junfeng WANG. Investigation of enhanced boiling heat transfer on porous structural surfaces by high voltage electric field [J]. CIESC Journal, 2023, 74(7): 2869-2879. |
[5] | Jinming GAO, Yujiao GUO, Chenglin E, Chunxi LU. Study on the separation characteristics of a downstream gas-liquid vortex separator in a closed hood [J]. CIESC Journal, 2023, 74(7): 2957-2966. |
[6] | Ben ZHANG, Songbai WANG, Ziya WEI, Tingting HAO, Xuehu MA, Rongfu WEN. Capillary liquid film condensation and heat transfer enhancement driven by superhydrophilic porous metal structure [J]. CIESC Journal, 2023, 74(7): 2824-2835. |
[7] | Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions [J]. CIESC Journal, 2023, 74(3): 1062-1072. |
[8] | Jianzhao BAI, Zixuan GUO, Dewu WANG, Yan LIU, Ruojin WANG, Meng TANG, Shaofeng ZHANG. Effect of roll on pressure drop in concurrent gas-liquid columns with tridimensional rotational flow sieve tray [J]. CIESC Journal, 2023, 74(2): 707-720. |
[9] | Jian XU, Donghui ZHANG, Jun HUANG, Lei FENG, Fengyuan YANG, Xiang GAO. Effect of structural parameters on flow boiling performance of sintered microchannels [J]. CIESC Journal, 2023, 74(11): 4548-4558. |
[10] | Yanfang YU, Huanchen LIU, Huibo MENG, Litu LIU, Yu LI, Jianhua WU. Experimental investigation of turbulent dispersion and hydrodynamic behavior of bubble in Lightnin static mixer [J]. CIESC Journal, 2022, 73(8): 3565-3575. |
[11] | Hanwen XUE, Feng NIE, Yanxing ZHAO, Xueqiang DONG, Hao GUO, Jun SHEN, Maoqiong GONG. Experimental study of flow boiling pressure drop of R290 in a horizontal tube based on flow pattern [J]. CIESC Journal, 2022, 73(11): 4903-4916. |
[12] | Zhimin LIN, Chongzhao WANG, Guozhi QIANG, Shushan LIU, Liangbi WANG. Analysis of flow and heat transfer characteristics of lubricating oil in circular tube with coaxial crossed vortex generators [J]. CIESC Journal, 2022, 73(11): 4957-4973. |
[13] | Pei ZHOU, Xiuping ZHANG, Jingchun TANG, Lei YANG, Bin YE, Ronghua HUANG. Experimental and theoretical study on bubble lift-off diameter in subcooled flow boiling [J]. CIESC Journal, 2022, 73(1): 194-203. |
[14] | Junqi WENG, Xinlei LIU, Jiahao YU, Yao SHI, Guanghua YE, Jin QU, Xuezhi DUAN, Jinbing LI, Xinggui ZHOU. Influence of hollow structure of honeycomb catalysts on the pressure drop in packed bed reactors [J]. CIESC Journal, 2022, 73(1): 266-274. |
[15] | KUANG Yiwu, SUN Lijie, WANG Wen, ZHUAN Rui, ZHANG Liang. Numerical investigation of hydrogen flow boiling based on two-fluid model [J]. CIESC Journal, 2021, 72(S1): 184-193. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||