CIESC Journal ›› 2023, Vol. 74 ›› Issue (11): 4487-4500.DOI: 10.11949/0438-1157.20230844
• Thermodynamics • Previous Articles Next Articles
Fang ZHOU1(), Jian LIU1,2(), Xiaosong ZHANG1,2
Received:
2023-08-16
Revised:
2023-10-30
Online:
2024-01-22
Published:
2023-11-25
Contact:
Jian LIU
通讯作者:
刘剑
作者简介:
周昉(2000—),女,硕士研究生,220220465@seu.edu.cn
基金资助:
CLC Number:
Fang ZHOU, Jian LIU, Xiaosong ZHANG. Selection of ternary zeotropic mixtures for high-temperature heat pumps on multiparameter evaluation principles[J]. CIESC Journal, 2023, 74(11): 4487-4500.
周昉, 刘剑, 张小松. 基于多参数评估原则筛选高温热泵用三元非共沸混合工质[J]. 化工学报, 2023, 74(11): 4487-4500.
Add to citation manager EndNote|Ris|BibTeX
年份 | 工质 | 出水温度/冷凝温度 | COP | 热泵类型 | 文献 |
---|---|---|---|---|---|
2023 | R1234ze(Z)/acetone R1234ze(Z)/isohexane | 200℃ | 4.5 | 带中间换热器的高温热泵 | [ |
2023 | CO2/R600 CO2/R601 | 115℃ | 3.6 | 级联蒸汽压缩式 | [ |
2023 | R600a/R601a | 80℃ | 4.82 | 单级蒸汽压缩式 | [ |
2023 | CO2/acetone | 200℃ | 5.15 | 带中间换热器的高温热泵 | [ |
2022 | CO2/R134a | 50℃ | 3.07 | 级联蒸汽压缩式 | [ |
2020 | R290/R600a/R13I1 | 90℃ | 3.8 | 两级压缩高温热泵 | [ |
2019 | CO2/R32 CO2/R41 | 99℃ | 5.28 | 带中间换热器的高温热泵 | [ |
2010 | R152a/R245fa | 90℃ | 3.4 | 单级蒸汽压缩式 | [ |
Table 1 Summary of zeotropic mixtures for high-temperature heat pump
年份 | 工质 | 出水温度/冷凝温度 | COP | 热泵类型 | 文献 |
---|---|---|---|---|---|
2023 | R1234ze(Z)/acetone R1234ze(Z)/isohexane | 200℃ | 4.5 | 带中间换热器的高温热泵 | [ |
2023 | CO2/R600 CO2/R601 | 115℃ | 3.6 | 级联蒸汽压缩式 | [ |
2023 | R600a/R601a | 80℃ | 4.82 | 单级蒸汽压缩式 | [ |
2023 | CO2/acetone | 200℃ | 5.15 | 带中间换热器的高温热泵 | [ |
2022 | CO2/R134a | 50℃ | 3.07 | 级联蒸汽压缩式 | [ |
2020 | R290/R600a/R13I1 | 90℃ | 3.8 | 两级压缩高温热泵 | [ |
2019 | CO2/R32 CO2/R41 | 99℃ | 5.28 | 带中间换热器的高温热泵 | [ |
2010 | R152a/R245fa | 90℃ | 3.4 | 单级蒸汽压缩式 | [ |
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
废水入口温度(T5) | 30℃ | 蒸发器中露点温度(Tevap,dew) | T5-5℃ |
废水出口温度(T6) | 5℃ | 冷凝器中露点温度(Tcond,dew) | T8+5℃ |
热水进口温度(T7) | 30℃ | 蒸发器中过热度(Tsh) | 5℃ |
热水出口温度(T8) | 85℃ | 冷凝器中过冷度(Tsc) | 3℃ |
Table 2 Operating parameters of high-temperature heat pump system
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
废水入口温度(T5) | 30℃ | 蒸发器中露点温度(Tevap,dew) | T5-5℃ |
废水出口温度(T6) | 5℃ | 冷凝器中露点温度(Tcond,dew) | T8+5℃ |
热水进口温度(T7) | 30℃ | 蒸发器中过热度(Tsh) | 5℃ |
热水出口温度(T8) | 85℃ | 冷凝器中过冷度(Tsc) | 3℃ |
部件 | 能量平衡 | 㶲平衡② |
---|---|---|
压缩机 | ||
冷凝器 | ||
膨胀阀 | ||
蒸发器 |
Table 3 Energy and exergy balance of each component
部件 | 能量平衡 | 㶲平衡② |
---|---|---|
压缩机 | ||
冷凝器 | ||
膨胀阀 | ||
蒸发器 |
工质 | 标准沸点/℃ | 临界温度/℃ | 临界压力/MPa | ODP | GWP100 | 可燃性 | LFL/%(体积分数) | UFL/%(体积分数) |
---|---|---|---|---|---|---|---|---|
CO2 | -78.46 | 30.98 | 7.38 | 0 | 1 | A1 | — | — |
R600a | -11.75 | 134.66 | 3.63 | 0 | 约20 | A3 | 1.8 | 8.4 |
R290 | -42.11 | 96.74 | 4.25 | 0 | 5 | A3 | 2.1 | 9.5 |
R1270 | -47.62 | 91.06 | 4.56 | 0 | 1.8 | A3 | 2 | 11.1 |
RE170 | -24.78 | 127.23 | 5.34 | 0 | 1 | A3 | 3.4 | 27 |
R1336mzz(Z) | 33.45 | 171.35 | 2.90 | 0 | 2 | A1 | — | — |
R1234ze(Z) | 9.75 | 150.12 | 3.53 | 0 | <1 | A2L | 7.5 | 16.4 |
Table 4 Physical parameters and environmental performance of common pure refrigerants[34]
工质 | 标准沸点/℃ | 临界温度/℃ | 临界压力/MPa | ODP | GWP100 | 可燃性 | LFL/%(体积分数) | UFL/%(体积分数) |
---|---|---|---|---|---|---|---|---|
CO2 | -78.46 | 30.98 | 7.38 | 0 | 1 | A1 | — | — |
R600a | -11.75 | 134.66 | 3.63 | 0 | 约20 | A3 | 1.8 | 8.4 |
R290 | -42.11 | 96.74 | 4.25 | 0 | 5 | A3 | 2.1 | 9.5 |
R1270 | -47.62 | 91.06 | 4.56 | 0 | 1.8 | A3 | 2 | 11.1 |
RE170 | -24.78 | 127.23 | 5.34 | 0 | 1 | A3 | 3.4 | 27 |
R1336mzz(Z) | 33.45 | 171.35 | 2.90 | 0 | 2 | A1 | — | — |
R1234ze(Z) | 9.75 | 150.12 | 3.53 | 0 | <1 | A2L | 7.5 | 16.4 |
反应物 | 生成物 | ||
---|---|---|---|
工质 | 生成焓/(kJ/mol) | 工质 | 生成焓/(kJ/mol) |
CO2 | -393.51 | CO2 | -393.51 |
R600a | -134.20 | COF2 | -638.90 |
R290 | -104.70 | H2O | -241.83 |
R1270 | 20.41 | HF | -273.30 |
RE170 | -184.10 | ||
R1336mzz(Z) | — | ||
R1234ze(Z) | -781.82 |
Table 5 Enthalpy of formation of various pure refrigerants (298 K)[34]
反应物 | 生成物 | ||
---|---|---|---|
工质 | 生成焓/(kJ/mol) | 工质 | 生成焓/(kJ/mol) |
CO2 | -393.51 | CO2 | -393.51 |
R600a | -134.20 | COF2 | -638.90 |
R290 | -104.70 | H2O | -241.83 |
R1270 | 20.41 | HF | -273.30 |
RE170 | -184.10 | ||
R1336mzz(Z) | — | ||
R1234ze(Z) | -781.82 |
工质对 | 质量分数比例 | 冷凝器侧水温/℃ | 蒸发器侧水温/℃ | 过热度/℃ | COPth | COPref | COPerror |
---|---|---|---|---|---|---|---|
CO2/R32/ R1234yf | 0.04/0.44/0.52 | 20→30 | 15→9 | 3 | 7.81 | 8.2 | 4.99% |
0.05/0.28/0.67 | 7.88 | 7.4 | 6.09% |
Table 6 Compared working conditions and results[43]
工质对 | 质量分数比例 | 冷凝器侧水温/℃ | 蒸发器侧水温/℃ | 过热度/℃ | COPth | COPref | COPerror |
---|---|---|---|---|---|---|---|
CO2/R32/ R1234yf | 0.04/0.44/0.52 | 20→30 | 15→9 | 3 | 7.81 | 8.2 | 4.99% |
0.05/0.28/0.67 | 7.88 | 7.4 | 6.09% |
混合工质 | 质量分数比例 | 运行压力 | |||
---|---|---|---|---|---|
CO2/R600a/R1336mzz(Z) | CO2 | R600a | R1336mzz(Z) | Pevap/MPa | Pcond/MPa |
0.4 | 0.1~0 | 0.5~0.6 | 0.34~0.26 | 2.90~2.23 | |
0.3 | 0.3~0 | 0.4~0.7 | 0.41~0.19 | 2.88~1.57 | |
0.2 | 0.8~0.1 | 0~0.7 | 0.47~0.18 | 2.37~1.43 | |
0.1 | 0.9~0.2 | 0~0.7 | 0.41~0.17 | 1.96~1.28 | |
0 | 1~0.3 | 0~0.7 | 0.35~0.16 | 1.64~1.12 | |
CO2/R290/R1336mzz(Z) | CO2 | R290 | R1336mzz(Z) | Pevap/MPa | Pcond/MPa |
0.3 | 0.1~0 | 0.6~0.7 | 0.26~0.19 | 2.19~1.57 | |
0.2 | 0.3~0.1 | 0.5~0.7 | 0.35~0.19 | 2.87~1.56 | |
0.1 | 0.4~0.2 | 0.5~0.7 | 0.35~0.19 | 2.63~1.54 | |
0 | 0.6~0.3 | 0.4~0.7 | 0.46~0.19 | 2.76~1.49 | |
CO2/R1270/R1336mzz(Z) | CO2 | R1270 | R1336mzz(Z) | Pevap/MPa | Pcond/MPa |
0.3 | 0.1~0 | 0.6~0.7 | 0.26~0.19 | 2.22~1.57 | |
0.2 | 0.2~0.1 | 0.6~0.7 | 0.26~0.20 | 2.20~1.58 | |
0.1 | 0.4~0.2 | 0.5~0.7 | 0.36~0.20 | 2.84~1.59 | |
0 | 0.6~0.3 | 0.4~0.7 | 0.46~0.19 | 2.76~1.49 | |
CO2/RE170/R1336mzz(Z) | CO2 | RE170 | R1336mzz(Z) | Pevap/MPa | Pcond/MPa |
0.4 | 0.1~0 | 0.5~0.6 | 0.33~0.26 | 2.75~2.23 | |
0.3 | 0.3~0 | 0.4~0.7 | 0.39~0.19 | 2.74~1.57 | |
0.2 | 0.6~0.1 | 0.2~0.7 | 0.53~0.18 | 2.97~1.43 | |
0.1 | 0.8~0.2 | 0.1~0.7 | 0.56~0.17 | 2.84~1.29 | |
0 | 1~0.3 | 0~0.7 | 0.59~0.17 | 2.72~1.17 | |
CO2/R600a/R1234ze(Z) | CO2 | R600a | R1234ze(Z) | Pevap/MPa | Pcond/MPa |
0.3 | 0.1~0 | 0.6~0.7 | 0.44~0.38 | 2.91~2.55 | |
0.2 | 0.8~0 | 0~0.8 | 0.47~0.30 | 2.37~1.92 | |
0.1 | 0.9~0 | 0~0.9 | 0.41~0.23 | 1.96~1.46 | |
0 | 1~0 | 0~1 | 0.35~0.18 | 1.64~1.08 | |
CO2/R290/R1234ze(Z) | CO2 | R290 | R1234ze(Z) | Pevap/MPa | Pcond/MPa |
0.2 | 0.1~0 | 0.7~0.8 | 0.37~0.30 | 2.47~1.92 | |
0.1 | 0.3~0 | 0.6~0.9 | 0.47~0.23 | 2.86~1.46 | |
0 | 0.5~0 | 0.5~1 | 0.56~0.18 | 2.90~1.08 | |
CO2/R1270/R1234ze(Z) | CO2 | R1270 | R1234ze(Z) | Pevap/MPa | Pcond/MPa |
0.2 | 0.1~0 | 0.7~0.8 | 0.38~0.30 | 2.50~1.92 | |
0.1 | 0.2~0.1 | 0.7~0.9 | 0.38~0.23 | 2.42~1.46 | |
0 | 0.5~0 | 0.5~1 | 0.56~0.18 | 2.90~1.08 | |
CO2/RE170/R1234ze(Z) | CO2 | RE170 | R1234ze(Z) | Pevap/MPa | Pcond/MPa |
0.3 | 0.1~0 | 0.6~0.7 | 0.45~0.38 | 2.89~2.55 | |
0.2 | 0.4~0 | 0.4~0.8 | 0.52~0.30 | 2.91~1.92 | |
0.1 | 0.8~0 | 0.1~0.9 | 0.61~0.23 | 2.95~1.46 | |
0 | 1~0.3 | 0~0.7 | 0.59~0.18 | 2.72~1.08 |
Table 7 Selected results with the operated pressure
混合工质 | 质量分数比例 | 运行压力 | |||
---|---|---|---|---|---|
CO2/R600a/R1336mzz(Z) | CO2 | R600a | R1336mzz(Z) | Pevap/MPa | Pcond/MPa |
0.4 | 0.1~0 | 0.5~0.6 | 0.34~0.26 | 2.90~2.23 | |
0.3 | 0.3~0 | 0.4~0.7 | 0.41~0.19 | 2.88~1.57 | |
0.2 | 0.8~0.1 | 0~0.7 | 0.47~0.18 | 2.37~1.43 | |
0.1 | 0.9~0.2 | 0~0.7 | 0.41~0.17 | 1.96~1.28 | |
0 | 1~0.3 | 0~0.7 | 0.35~0.16 | 1.64~1.12 | |
CO2/R290/R1336mzz(Z) | CO2 | R290 | R1336mzz(Z) | Pevap/MPa | Pcond/MPa |
0.3 | 0.1~0 | 0.6~0.7 | 0.26~0.19 | 2.19~1.57 | |
0.2 | 0.3~0.1 | 0.5~0.7 | 0.35~0.19 | 2.87~1.56 | |
0.1 | 0.4~0.2 | 0.5~0.7 | 0.35~0.19 | 2.63~1.54 | |
0 | 0.6~0.3 | 0.4~0.7 | 0.46~0.19 | 2.76~1.49 | |
CO2/R1270/R1336mzz(Z) | CO2 | R1270 | R1336mzz(Z) | Pevap/MPa | Pcond/MPa |
0.3 | 0.1~0 | 0.6~0.7 | 0.26~0.19 | 2.22~1.57 | |
0.2 | 0.2~0.1 | 0.6~0.7 | 0.26~0.20 | 2.20~1.58 | |
0.1 | 0.4~0.2 | 0.5~0.7 | 0.36~0.20 | 2.84~1.59 | |
0 | 0.6~0.3 | 0.4~0.7 | 0.46~0.19 | 2.76~1.49 | |
CO2/RE170/R1336mzz(Z) | CO2 | RE170 | R1336mzz(Z) | Pevap/MPa | Pcond/MPa |
0.4 | 0.1~0 | 0.5~0.6 | 0.33~0.26 | 2.75~2.23 | |
0.3 | 0.3~0 | 0.4~0.7 | 0.39~0.19 | 2.74~1.57 | |
0.2 | 0.6~0.1 | 0.2~0.7 | 0.53~0.18 | 2.97~1.43 | |
0.1 | 0.8~0.2 | 0.1~0.7 | 0.56~0.17 | 2.84~1.29 | |
0 | 1~0.3 | 0~0.7 | 0.59~0.17 | 2.72~1.17 | |
CO2/R600a/R1234ze(Z) | CO2 | R600a | R1234ze(Z) | Pevap/MPa | Pcond/MPa |
0.3 | 0.1~0 | 0.6~0.7 | 0.44~0.38 | 2.91~2.55 | |
0.2 | 0.8~0 | 0~0.8 | 0.47~0.30 | 2.37~1.92 | |
0.1 | 0.9~0 | 0~0.9 | 0.41~0.23 | 1.96~1.46 | |
0 | 1~0 | 0~1 | 0.35~0.18 | 1.64~1.08 | |
CO2/R290/R1234ze(Z) | CO2 | R290 | R1234ze(Z) | Pevap/MPa | Pcond/MPa |
0.2 | 0.1~0 | 0.7~0.8 | 0.37~0.30 | 2.47~1.92 | |
0.1 | 0.3~0 | 0.6~0.9 | 0.47~0.23 | 2.86~1.46 | |
0 | 0.5~0 | 0.5~1 | 0.56~0.18 | 2.90~1.08 | |
CO2/R1270/R1234ze(Z) | CO2 | R1270 | R1234ze(Z) | Pevap/MPa | Pcond/MPa |
0.2 | 0.1~0 | 0.7~0.8 | 0.38~0.30 | 2.50~1.92 | |
0.1 | 0.2~0.1 | 0.7~0.9 | 0.38~0.23 | 2.42~1.46 | |
0 | 0.5~0 | 0.5~1 | 0.56~0.18 | 2.90~1.08 | |
CO2/RE170/R1234ze(Z) | CO2 | RE170 | R1234ze(Z) | Pevap/MPa | Pcond/MPa |
0.3 | 0.1~0 | 0.6~0.7 | 0.45~0.38 | 2.89~2.55 | |
0.2 | 0.4~0 | 0.4~0.8 | 0.52~0.30 | 2.91~1.92 | |
0.1 | 0.8~0 | 0.1~0.9 | 0.61~0.23 | 2.95~1.46 | |
0 | 1~0.3 | 0~0.7 | 0.59~0.18 | 2.72~1.08 |
混合工质 | 质量分数比例 | 温度滑移 | 混合工质 | 质量分数比例 | 温度滑移 | ||||
---|---|---|---|---|---|---|---|---|---|
CO2/R600a/ R1336mzz(Z) | CO2 | R600a | R1336mzz(Z) | ΔTglide/K | CO2/R600a/ R1234ze(Z) | CO2 | R600a | R1234ze(Z) | ΔTglide/K |
0.2 | 0.8~0.6 | 0~0.2 | 56.55~58.90 | 0.2 | 0.8~0.2 | 0~0.6 | 56.55~58.79 | ||
0.1 | 0.6~0.3 | 0.3~0.6 | 40.22~58.57 | 0.1 | 0.2~0 | 0.7~0.9 | 42.62~53.44 | ||
CO2/R290/ R1336mzz(Z) | CO2 | R290 | R1336mzz(Z) | ΔTglide/K | CO2/R290/ R1234ze(Z) | CO2 | R290 | R1234ze(Z) | ΔTglide/K |
0.1 | 0.4~0.3 | 0.5~0.6 | 48.76~59.95 | 0.1 | 0.2~0 | 0.7~0.9 | 44.38~53.44 | ||
CO2/R1270/ R1336mzz(Z) | CO2 | R1270 | R1336mzz(Z) | ΔTglide/K | CO2/R1270/ R1234ze(Z) | CO2 | R1270 | R1234ze(Z) | ΔTglide/K |
0.1 | 0.4~0.3 | 0.5~0.6 | 45.59~56.39 | 0.1 | 0.2~0 | 0.7~0.9 | 42.83~53.44 | ||
CO2/RE170/ R1336mzz(Z) | CO2 | RE170 | R1336mzz(Z) | ΔTglide/K | CO2/RE170/ R1234ze(Z) | CO2 | RE170 | R1234ze(Z) | ΔTglide/K |
0.2 | 0.5~0.4 | 0.3~0.4 | 41.83~50.67 | 0.2 | 0.3~0.1 | 0.5~0.7 | 42.42~58.39 | ||
0.1 | 0.4~0.3 | 0.5~0.6 | 40.38~49.63 | 0.1 | 0.1~0 | 0.8~0.9 | 43.09~53.44 |
Table 8 Selected results with the glide temperature
混合工质 | 质量分数比例 | 温度滑移 | 混合工质 | 质量分数比例 | 温度滑移 | ||||
---|---|---|---|---|---|---|---|---|---|
CO2/R600a/ R1336mzz(Z) | CO2 | R600a | R1336mzz(Z) | ΔTglide/K | CO2/R600a/ R1234ze(Z) | CO2 | R600a | R1234ze(Z) | ΔTglide/K |
0.2 | 0.8~0.6 | 0~0.2 | 56.55~58.90 | 0.2 | 0.8~0.2 | 0~0.6 | 56.55~58.79 | ||
0.1 | 0.6~0.3 | 0.3~0.6 | 40.22~58.57 | 0.1 | 0.2~0 | 0.7~0.9 | 42.62~53.44 | ||
CO2/R290/ R1336mzz(Z) | CO2 | R290 | R1336mzz(Z) | ΔTglide/K | CO2/R290/ R1234ze(Z) | CO2 | R290 | R1234ze(Z) | ΔTglide/K |
0.1 | 0.4~0.3 | 0.5~0.6 | 48.76~59.95 | 0.1 | 0.2~0 | 0.7~0.9 | 44.38~53.44 | ||
CO2/R1270/ R1336mzz(Z) | CO2 | R1270 | R1336mzz(Z) | ΔTglide/K | CO2/R1270/ R1234ze(Z) | CO2 | R1270 | R1234ze(Z) | ΔTglide/K |
0.1 | 0.4~0.3 | 0.5~0.6 | 45.59~56.39 | 0.1 | 0.2~0 | 0.7~0.9 | 42.83~53.44 | ||
CO2/RE170/ R1336mzz(Z) | CO2 | RE170 | R1336mzz(Z) | ΔTglide/K | CO2/RE170/ R1234ze(Z) | CO2 | RE170 | R1234ze(Z) | ΔTglide/K |
0.2 | 0.5~0.4 | 0.3~0.4 | 41.83~50.67 | 0.2 | 0.3~0.1 | 0.5~0.7 | 42.42~58.39 | ||
0.1 | 0.4~0.3 | 0.5~0.6 | 40.38~49.63 | 0.1 | 0.1~0 | 0.8~0.9 | 43.09~53.44 |
混合工质 | 工质对 | 质量分数比例 | 可燃等级 | 混合工质 | 工质对 | 质量分数比例 | 可燃等级 |
---|---|---|---|---|---|---|---|
CO2/R600a/ R1336mzz(Z) | R1 | 0.1/0.6/0.3 | ≤A2 | CO2/R600a/ R1234ze(Z) | R13 | 0.2/0.3/0.5 | ≤A2 |
R2 | 0.1/0.5/0.4 | ≤A2 | R14 | 0.2/0.2/0.6 | ≤A2 | ||
R3 | 0.1/0.4/0.5 | ≤A2 | R15 | 0.1/0.2/0.7 | ≤A2 | ||
R4 | 0.1/0.3/0.6 | ≤A2 | R16 | 0.1/0.1/0.8 | ≤A2 | ||
CO2/R290/ R1336mzz(Z) | R5 | 0.1/0.4/0.5 | ≤A2 | CO2/R290/ R1234ze(Z) | R17 | 0.1/0.2/0.7 | ≤A2 |
R6 | 0.1/0.3/0.6 | ≤A2 | R18 | 0.1/0.1/0.8 | ≤A2 | ||
CO2/R1270/ R1336mzz(Z) | R7 | 0.1/0.4/0.5 | ≤A2 | CO2/R1270/ R1234ze(Z) | R19 | 0.1/0.2/0.7 | ≤A2 |
R8 | 0.1/0.3/0.6 | ≤A2 | R20 | 0.1/0.1/0.8 | ≤A2 | ||
CO2/RE170/ R1336mzz(Z) | R9 | 0.2/0.5/0.3 | ≤A2 | CO2/RE170/ R1234ze(Z) | R21 | 0.2/0.3/0.5 | ≤A2 |
R10 | 0.2/0.4/0.4 | ≤A2 | R22 | 0.2/0.2/0.6 | ≤A2 | ||
R11 | 0.1/0.4/0.5 | ≤A2 | R23 | 0.2/0.1/0.7 | ≤A2 | ||
R12 | 0.1/0.3/0.6 | ≤A2 | R24 | 0.1/0.1/0.8 | ≤A2 |
Table 9 Selected results with the safety and flammability
混合工质 | 工质对 | 质量分数比例 | 可燃等级 | 混合工质 | 工质对 | 质量分数比例 | 可燃等级 |
---|---|---|---|---|---|---|---|
CO2/R600a/ R1336mzz(Z) | R1 | 0.1/0.6/0.3 | ≤A2 | CO2/R600a/ R1234ze(Z) | R13 | 0.2/0.3/0.5 | ≤A2 |
R2 | 0.1/0.5/0.4 | ≤A2 | R14 | 0.2/0.2/0.6 | ≤A2 | ||
R3 | 0.1/0.4/0.5 | ≤A2 | R15 | 0.1/0.2/0.7 | ≤A2 | ||
R4 | 0.1/0.3/0.6 | ≤A2 | R16 | 0.1/0.1/0.8 | ≤A2 | ||
CO2/R290/ R1336mzz(Z) | R5 | 0.1/0.4/0.5 | ≤A2 | CO2/R290/ R1234ze(Z) | R17 | 0.1/0.2/0.7 | ≤A2 |
R6 | 0.1/0.3/0.6 | ≤A2 | R18 | 0.1/0.1/0.8 | ≤A2 | ||
CO2/R1270/ R1336mzz(Z) | R7 | 0.1/0.4/0.5 | ≤A2 | CO2/R1270/ R1234ze(Z) | R19 | 0.1/0.2/0.7 | ≤A2 |
R8 | 0.1/0.3/0.6 | ≤A2 | R20 | 0.1/0.1/0.8 | ≤A2 | ||
CO2/RE170/ R1336mzz(Z) | R9 | 0.2/0.5/0.3 | ≤A2 | CO2/RE170/ R1234ze(Z) | R21 | 0.2/0.3/0.5 | ≤A2 |
R10 | 0.2/0.4/0.4 | ≤A2 | R22 | 0.2/0.2/0.6 | ≤A2 | ||
R11 | 0.1/0.4/0.5 | ≤A2 | R23 | 0.2/0.1/0.7 | ≤A2 | ||
R12 | 0.1/0.3/0.6 | ≤A2 | R24 | 0.1/0.1/0.8 | ≤A2 |
1 | Vannoni A, Sorce A, Traverso A, et al. Techno-economic optimization of high-temperature heat pumps for waste heat recovery[J]. Energy Conversion and Management, 2023, 290: 117194. |
2 | Jouhara H, Olabi A G. Editorial: industrial waste heat recovery[J]. Energy, 2018, 160: 1-2. |
3 | Hamid K, Sajjad U, Ulrich Ahrens M, et al. Potential evaluation of integrated high temperature heat pumps: a review of recent advances[J]. Applied Thermal Engineering, 2023, 230: 120720. |
4 | Adamson K M, Walmsley T G, Carson J K, et al. High-temperature and transcritical heat pump cycles and advancements: a review[J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112798. |
5 | Abas N, Kalair A R, Khan N, et al. Natural and synthetic refrigerants, global warming: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 557-569. |
6 | Mateu-Royo C, Navarro-Esbrí J, Mota-Babiloni A, et al. Thermodynamic analysis of low GWP alternatives to HFC-245fa in high-temperature heat pumps: HCFO-1224yd(Z), HCFO-1233zd(E) and HFO-1336mzz(Z)[J]. Applied Thermal Engineering, 2019, 152: 762-777. |
7 | Bolaji B O, Huan Z. Ozone depletion and global warming: case for the use of natural refrigerant—a review[J]. Renewable and Sustainable Energy Reviews, 2013, 18: 49-54. |
8 | Harby K. Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: an updated overview[J]. Renewable and Sustainable Energy Reviews, 2017, 73: 1247-1264. |
9 | Al-Sayyab A K S, Navarro-Esbrí J, Barragán-Cervera A, et al. Comprehensive experimental evaluation of R1234yf-based low GWP working fluids for refrigeration and heat pumps[J]. Energy Conversion and Management, 2022, 258: 115378. |
10 | Pabon J J G, Khosravi A, Belman-Flores J M, et al. Applications of refrigerant R1234yf in heating, air conditioning and refrigeration systems: a decade of researches[J]. International Journal of Refrigeration, 2020, 118: 104-113. |
11 | Sarkar J, Bhattacharyya S. Assessment of blends of CO2 with butane and isobutane as working fluids for heat pump applications[J]. International Journal of Thermal Sciences, 2009, 48(7): 1460-1465. |
12 | Niu B L, Zhang Y F. Experimental study of the refrigeration cycle performance for the R744/R290 mixtures[J]. International Journal of Refrigeration, 2007, 30(1): 37-42. |
13 | Yao X Y, Shen J, Kang H F, et al. Measurement of critical parameters for the binary mixture of R744 (carbon dioxide) + R1234yf (2,3,3,3-tetrafluoropro-1-ene)[J]. The Journal of Chemical Thermodynamics, 2023, 178: 106978. |
14 | Thu K, Takezato K, Takata N, et al. Drop-in experiments and exergy assessment of HFC-32/HFO-1234yf/R744 mixture with GWP below 150 for domestic heat pumps[J]. International Journal of Refrigeration, 2021, 121: 289-301. |
15 | Sánchez D, Cabello R, Llopis R, et al. Energy assessment and environmental impact analysis of an R134a/R744 cascade refrigeration plant upgraded with the low-GWP refrigerants R152a, R1234ze(E), propane (R290) and propylene (R1270)[J]. International Journal of Refrigeration, 2019, 104: 321-334. |
16 | Kim J H, Cho J M, Kim M S. Cooling performance of several CO2/propane mixtures and glide matching with secondary heat transfer fluid[J]. International Journal of Refrigeration, 2008, 31(5): 800-806. |
17 | Garimella S, Milkie J, MacDonald M. Condensation of zeotropic mixtures of low-pressure hydrocarbons and synthetic refrigerants[J]. International Journal of Heat and Mass Transfer, 2020, 162: 120301. |
18 | 梁坤峰, 冯长振, 王莫然, 等. 非共沸工质换热匹配特性影响热泵性能的高级㶲分析[J]. 化工学报, 2021, 72(4): 2038-2046. |
Liang K F, Feng C Z, Wang M R, et al. Advanced exergy analysis of heat pump performance affected by heat transfer matching characteristics of non-azeotropic refrigerants[J]. CIESC Journal, 2021, 72(4): 2038-2046. | |
19 | Abedini H, Tomassetti S, Di Nicola G, et al. Zeotropic mixtures R1234ze(Z)/acetone and R1234ze(Z)/isohexane as refrigerants in high temperature heat pumps: influence of the accuracy in thermodynamic properties evaluations [J]. International Journal of Refrigeration, 2023, 152: 93-109. |
20 | Ganesan P, Eikevik T M. New zeotropic CO2-based refrigerant mixtures for cascade high-temperature heat pump to reach heat sink temperature up to 180℃[J]. Energy Conversion and Management: X, 2023, 20: 100407. |
21 | Dai B M, Feng Y N, Liu S C, et al. Dual pressure condensation heating high temperature heat pump using eco-friendly working fluid mixtures for industrial heating processes: 4E analysis[J]. Energy, 2023, 283: 128639. |
22 | Gómez-Hernández J, Grimes R, Briongos J V, et al. Carbon dioxide and acetone mixtures as refrigerants for industry heat pumps to supply temperature in the range 150—220℃[J]. Energy, 2023, 269: 126821. |
23 | Zhang H W, Geng X D, Shao S Q, et al. Performance analysis of a R134a/CO2 cascade heat pump in severe cold regions of China[J]. Energy, 2022, 239: 122651. |
24 | Xiao B, Chang H W, He L, et al. Annual performance analysis of an air source heat pump water heater using a new eco-friendly refrigerant mixture as an alternative to R134a[J]. Renewable Energy, 2020, 147: 2013-2023. |
25 | Guo H, Gong M Q, Qin X Y. Performance analysis of a modified subcritical zeotropic mixture recuperative high-temperature heat pump[J]. Applied Energy, 2019, 237: 338-352. |
26 | Zhang S J, Wang H X, Guo T. Experimental investigation of moderately high temperature water source heat pump with non-azeotropic refrigerant mixtures[J]. Applied Energy, 2010, 87(5): 1554-1561. |
27 | Ma X L, Zhang Y F, Fang L, et al. Performance analysis of a cascade high temperature heat pump using R245fa and BY-3 as working fluid[J]. Applied Thermal Engineering, 2018, 140: 466-475. |
28 | Fernández-Moreno A, Mota-Babiloni A, Giménez-Prades P, et al. Optimal refrigerant mixture in single-stage high-temperature heat pumps based on a multiparameter evaluation[J]. Sustainable Energy Technologies and Assessments, 2022, 52: 101989. |
29 | Abedini H, Vieren E, Demeester T, et al. A comprehensive analysis of binary mixtures as working fluid in high temperature heat pumps[J]. Energy Conversion and Management, 2023, 277: 116652. |
30 | 刘剑, 张小松. 基于大滑移温度非共沸工质的双温冷水机组[J]. 化工学报, 2016, 67(4): 1186-1192. |
Liu J, Zhang X S. Double temperature chilled water unit based on large temperature glide zeotropic mixture[J]. CIESC Journal, 2016, 67(4): 1186-1192. | |
31 | Zühlsdorf B, Jensen J K, Cignitti S, et al. Analysis of temperature glide matching of heat pumps with zeotropic working fluid mixtures for different temperature glides[J]. Energy, 2018, 153: 650-660. |
32 | Ganesan P, Eikevik T M, Hamid K, et al. Thermodynamic analysis of cascade high-temperature heat pump using new natural zeotropic refrigerant mixtures: R744/R600 and R744/R601[J]. International Journal of Refrigeration, 2023, 154: 215-230. |
33 | Brunin O, Feidt M, Hivet B. Comparison of the working domains of some compression heat pumps and a compression-absorption heat pump[J]. International Journal of Refrigeration, 1997, 20(5): 308-318. |
34 | ASHRAE. Designation and safety classification of refrigerants: standard 34—2019 [S]. Atlanta, GA, USA: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 2019. |
35 | Sobieraj M, Rosiński M. Experimental study of the heat transfer in R744/R600a mixtures below the R744 triple point temperature[J]. International Journal of Refrigeration, 2019, 103: 243-252. |
36 | Liu J, Zhou L, Lin Z, et al. Performance evaluation of low GWP large glide temperature zeotropic mixtures applied in air source heat pump for DHW production[J]. Energy Conversion and Management, 2022, 274: 116457. |
37 | Shu G Q, Long B, Tian H, et al. Flame temperature theory-based model for evaluation of the flammable zones of hydrocarbon-air-CO2 mixtures[J]. Journal of Hazardous Materials, 2015, 294: 137-144. |
38 | 巨福军. 热泵热水器用R744混合工质优选及其系统稳态与瞬态特性研究[D]. 南京: 东南大学, 2019. |
Ju F J. Study on the quality selection of R744 mixer for heat pump water heater and the steady and transient characteristics of the system[D]. Nanjing: Southeast University, 2019. | |
39 | 田贯三. 可燃制冷剂爆炸理论与燃烧爆炸抑制机理的研究[D]. 天津: 天津大学, 2000. |
Tian G S. Study on explosion theory of flammable refrigerant and suppression mechanism of combustion explosion[D].Tianjin: Tianjin University, 2000. | |
40 | Ma T G. A thermal theory for estimating the flammability limits of a mixture[J]. Fire Safety Journal, 2011, 46(8): 558-567. |
41 | Zhao Z, Luo J L, Yang K Y, et al. Experimental study on the influence of flame retardants on the flammability of R1234yf[J]. Journal of Loss Prevention in the Process Industries, 2023, 81: 104945. |
42 | Calleja-Anta D, Nebot-Andres L, Cabello R, et al. A3 and A2 refrigerants: border determination and hunt for A2 low-GWP blends[J]. International Journal of Refrigeration, 2022, 134: 86-94. |
43 | Fukuda S, Kojima H, Kondou C, et al. Experimental assessment on performance of a heat pump cycle using R32/R1234yf and R744/R32/R1234yf[C]//International Refrigeration and Air Conditioning Conference. 2016. |
44 | Tian H, Wu M Q, Shu G Q, et al. Experimental and theoretical study of flammability limits of hydrocarbon-CO2 mixture[J]. International Journal of Hydrogen Energy, 2017, 42(49): 29597-29605. |
45 | Chen Q, Yan J W, Chen G M, et al. Experimental studies on the flammability of mixtures of dimethyl ether[J]. Journal of Fluorine Chemistry, 2015, 176: 40-43. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[3] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[4] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[5] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[6] | Yurong DANG, Chunlan MO, Kerui SHI, Yingcong FANG, Ziyang ZHANG, Zuoshun LI. Comprehensive evaluation model combined with genetic algorithm for the study on the performance of ORC system with zeotropic mixture [J]. CIESC Journal, 2023, 74(5): 1884-1895. |
[7] | Yuanjing MAO, Zhi YANG, Songping MO, Hao GUO, Ying CHEN, Xianglong LUO, Jianyong CHEN, Yingzong LIANG. Estimation of SAFT-VR Mie equation of state parameters and thermodynamic properties of C6—C10 alcohols [J]. CIESC Journal, 2023, 74(3): 1033-1041. |
[8] | Junrui DENG, Zeyu LI, Jiayan CHEN. Pseudo-passive heat removal system for thermal safety of power battery [J]. CIESC Journal, 2023, 74(11): 4679-4687. |
[9] | Wei HE, Yongna CAO, Hongru SHANG, Yinxue LI, Chao GUO, Yanling YU. Optimum design and performance analysis of waste heat recovery system for biomass fermentation [J]. CIESC Journal, 2023, 74(10): 4302-4310. |
[10] | Yujun MA, Xiangjun LIU. Theoretical studies of water recovery from flue gas by using ceramic membrane [J]. CIESC Journal, 2022, 73(9): 4103-4112. |
[11] | Hongchao LIU, Suhang CHEN, Xianli DUAN, Fan WU, Xiaofei XU, Xianyu SONG, Shuangliang ZHAO, Honglai LIU. Transport behavior of Janus graphene quantum dots in biomembrane: a molecular dynamics simulation [J]. CIESC Journal, 2022, 73(7): 2835-2843. |
[12] | Jian CAO, Nannan YE, Guancong JIANG, Yao QIN, Shibo WANG, Jiahua ZHU, Xiaohua LU. Mass transfer resistance analysis of the interaction between porous carbon and hydrogen peroxide based on microcalorimetry [J]. CIESC Journal, 2022, 73(6): 2543-2551. |
[13] | Xue FU, Tingting CHEN, Tingting CHEN, Yingjie XU. Research progress on the conductivity properties of ionic liquids [J]. CIESC Journal, 2022, 73(5): 1883-1893. |
[14] | Miao LI, Hong ZHAO, Biao JIANG, Siyuan CHEN, Long YAN. Thermodynamic analysis on synthesis of key intermediate BaC2 in coal to acetylene [J]. CIESC Journal, 2022, 73(5): 1908-1919. |
[15] | Wei SONG, Wanjia LI, Shurong YU, Rongrong MA. Effect of thermal mechanical coupling on fretting wear behavior of TC4 alloy [J]. CIESC Journal, 2022, 73(3): 1324-1334. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||