CIESC Journal ›› 2023, Vol. 74 ›› Issue (11): 4679-4687.DOI: 10.11949/0438-1157.20230786
• Energy and environmental engineering • Previous Articles Next Articles
Junrui DENG(), Zeyu LI(
), Jiayan CHEN
Received:
2023-08-01
Revised:
2023-11-10
Online:
2024-01-22
Published:
2023-11-25
Contact:
Zeyu LI
通讯作者:
李泽宇
作者简介:
邓均锐(1998—),男,硕士研究生,junruideng@foxmail.com
基金资助:
CLC Number:
Junrui DENG, Zeyu LI, Jiayan CHEN. Pseudo-passive heat removal system for thermal safety of power battery[J]. CIESC Journal, 2023, 74(11): 4679-4687.
邓均锐, 李泽宇, 陈嘉衍. 面向动力电池热安全的准被动式热移出系统[J]. 化工学报, 2023, 74(11): 4679-4687.
测量参数 | 传感器类型 | 量程 | 精度 |
---|---|---|---|
温度 | PT100 | -60~300℃ | ±0.3℃ |
压力 | 绝压传感器 | 0~1100 kPa | ±0.25% |
压降 | 差压传感器 | 0~2 MPa | ±0.2% |
体积流量 | 椭圆齿轮流量计 | 5~100 L/h | ±0.5% |
电功率 | 功率计 | 0~150 W | ±0.5% |
Table 1 Measuring instrument of the system
测量参数 | 传感器类型 | 量程 | 精度 |
---|---|---|---|
温度 | PT100 | -60~300℃ | ±0.3℃ |
压力 | 绝压传感器 | 0~1100 kPa | ±0.25% |
压降 | 差压传感器 | 0~2 MPa | ±0.2% |
体积流量 | 椭圆齿轮流量计 | 5~100 L/h | ±0.5% |
电功率 | 功率计 | 0~150 W | ±0.5% |
模块 | 热导率/(W/(m·K)) | 热阻/(K/W) |
---|---|---|
冷端导热硅脂 | 2 | 8.3×10-3 |
热端导热硅脂 | 2 | 8.3×10-3 |
冷端陶瓷基板 | 22 | 0.012 |
热端陶瓷基板 | 22 | 0.012 |
焊接层 | 50 | 4.4×10-4 |
铜电极 | 397 | 2.5×10-4 |
热电半导体 | 1.57 | 0.85 |
接触热阻 | — | 0.12 |
Table 2 Thermal resistance of thermoelectric module
模块 | 热导率/(W/(m·K)) | 热阻/(K/W) |
---|---|---|
冷端导热硅脂 | 2 | 8.3×10-3 |
热端导热硅脂 | 2 | 8.3×10-3 |
冷端陶瓷基板 | 22 | 0.012 |
热端陶瓷基板 | 22 | 0.012 |
焊接层 | 50 | 4.4×10-4 |
铜电极 | 397 | 2.5×10-4 |
热电半导体 | 1.57 | 0.85 |
接触热阻 | — | 0.12 |
1 | 贾子润, 王震坡, 王秋诗, 等. 新能源汽车动力电池热失控机理和安全风险管控方法的研究[J]. 汽车工程, 2022, 44(11): 1689-1705. |
Jia Z R, Wang Z P, Wang Q S, et al. Research on thermal runaway mechanism and safety risk control method of power battery in new-energy vehicles[J]. Automotive Engineering, 2022, 44(11): 1689-1705. | |
2 | 国家发展改革委、国家能源局发布《“十四五”现代能源体系规划》[J]. 能源评论, 2022(4): 10. |
National Development and Reform Commission, National Energy Administration release the “14th Five-Year Plan” for modern energy system[J]. Energy Review, 2022(4): 10. | |
3 | 国务院办公厅. 新能源汽车产业发展规划(2021—2035年) [EB/OL]. 北京: 2020[2023-08-01]. . |
General Office of the State Council. Development plan of new energy vehicle industry (2021—2035)[EB/OL]. Beijing: 2020[2023-08-01]. . | |
4 | 周卓斌. 全球电动汽车销量强劲增长: 中国成为主要推动力[N]. 人民日报, 2023-03-01(17). |
Zhou Z B. Strong growth in global electric vehicle sales: China becomes the main driving force [N]. People's Daily, 2023-03-01(17). | |
5 | 孙金华. 动力电池安全研究进展[EB/OL]. 2022[2023-08-01]. . |
Sun J H. Research progress of power battery safety [EB/OL]. 2022[2023-08-01]. . | |
6 | 王芳, 王峥, 林春景, 等. 新能源汽车动力电池安全失效潜在原因分析[J]. 储能科学与技术, 2022, 11(5): 1411-1418. |
Wang F, Wang Z, Lin C J, et al. Analysis on potential causes of safety failure of new energy vehicles[J]. Energy Storage Science and Technology, 2022, 11(5): 1411-1418. | |
7 | 王莉, 谢乐琼, 田光宇, 等. 锂离子电池安全事故: 安全性问题,还是可靠性问题[J]. 储能科学与技术, 2021, 10(1): 1-6. |
Wang L, Xie L Q, Tian G Y, et al. Safety accidents of Li-ion batteries: reliability issues or safety issues[J]. Energy Storage Science and Technology, 2021, 10(1): 1-6. | |
8 | 冯旭宁. 车用锂离子动力电池热失控诱发与扩展机理、建模与防控[D]. 北京: 清华大学, 2016. |
Feng X N. Mechanism, modeling, prevention and control of thermal runaway of automotive lithium-ion power battery[D]. Beijing: Tsinghua University, 2016. | |
9 | 罗明昀, 凌子夜, 方晓明, 等. 基于相变储热技术的电池热管理系统研究进展[J]. 化工进展, 2022, 41(3): 1594-1607. |
Luo M Y, Ling Z Y, Fang X M, et al. Research progress of battery thermal management system based on phase change heat storage technology[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1594-1607. | |
10 | Longchamps R S, Yang X G, Wang C Y. Fundamental insights into battery thermal management and safety[J]. ACS Energy Letters, 2022, 7(3): 1103-1111. |
11 | 芮新宇, 冯旭宁, 韩雪冰, 等. 锂离子电池热失控蔓延问题研究综述[J]. 电池工业, 2020, 24(4): 193-201, 205. |
Rui X Y, Feng X N, Han X B, et al. Review on the thermal runaway propagation of lithium-ion batteries[J]. Chinese Battery Industry, 2020, 24(4): 193-201, 205. | |
12 | 李煌. 三元锂离子电池热失控传播及阻隔机制研究[D]. 合肥: 中国科学技术大学, 2020. |
Li H. Study on thermal runaway propagation and blocking mechanism of ternary lithium-ion battery[D]. Hefei: University of Science and Technology of China, 2020. | |
13 | 金露, 谢鹏, 赵彦琦, 等. 基于相变材料的电动汽车电池热管理研究进展[J]. 材料导报, 2021, 35(21): 21113-21126. |
Jin L, Xie P, Zhao Y Q, et al. Research progress on phase change material based thermal management system of EV batteries[J]. Materials Reports, 2021, 35(21): 21113-21126. | |
14 | Xu J, Lan C J, Qiao Y, et al. Prevent thermal runaway of lithium-ion batteries with minichannel cooling[J]. Applied Thermal Engineering, 2017, 110: 883-890. |
15 | 仝义鑫. 基于相变材料和液体冷却的电池模组热失控传播过程研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
Tong Y X. Study on thermal runaway propagation process of battery module based on phase change material and liquid cooling[D]. Harbin: Harbin Institute of Technology, 2020. | |
16 | Zhang W C, Liang Z C, Yin X X, et al. Avoiding thermal runaway propagation of lithium-ion battery modules by using hybrid phase change material and liquid cooling[J]. Applied Thermal Engineering, 2021, 184: 116380. |
17 | Kshetrimayum K S, Yoon Y G, Gye H R, et al. Preventing heat propagation and thermal runaway in electric vehicle battery modules using integrated PCM and micro-channel plate cooling system[J]. Applied Thermal Engineering, 2019, 159: 113797. |
18 | 周剑文. 锂离子电池热失控建模与热蔓延抑制研究[D]. 济南: 山东大学, 2022. |
Zhou J W. Thermal runaway modeling and thermal spread suppression of lithium-ion batteries[D]. Jinan: Shandong University, 2022. | |
19 | Yang X L, Duan Y K, Feng X N, et al. An experimental study on preventing thermal runaway propagation in lithium-ion battery module using aerogel and liquid cooling plate together[J]. Fire Technology, 2020, 56(6): 2579-2602. |
20 | 董远夏, 张恒运, 朱佳俊, 等. 车用电池模组热蔓延防护结构的数值仿真研究[J]. 储能科学与技术, 2022, 11(5): 1608-1616. |
Dong Y X, Zhang H Y, Zhu J J, et al. Numerical simulation study on thermal runaway propagation mitigation structure of automotive battery module[J]. Energy Storage Science and Technology, 2022, 11(5): 1608-1616. | |
21 | Rui X Y, Feng X N, Wang H W, et al. Synergistic effect of insulation and liquid cooling on mitigating the thermal runaway propagation in lithium-ion battery module[J]. Applied Thermal Engineering, 2021, 199: 117521. |
22 | Ma Y Z, Ma G Y, Zhang S, et al. Cooling performance of a pump-driven two phase cooling system for free cooling in data centers[J]. Applied Thermal Engineering, 2016, 95: 143-149. |
23 | Wei L T, Jia L, An Z J, et al. Experimental study on thermal management of cylindrical Li-ion battery with flexible microchannel plates[J]. Journal of Thermal Science, 2020, 29(4): 1001-1009. |
24 | 辜云东. 以蒸馏水为工质的泵驱两相流动换热系统的数值模拟和实验研究[D]. 重庆: 重庆大学, 2021. |
Gu Y D. Numerical simulation and experimental study of pump-driven two-phase flow heat transfer system with water as working fluid[D]. Chongqing: Chongqing University 2021. | |
25 | Zhang P L, Li X T, Shi W X, et al. Experimentally comparative study on two-phase natural and pump-driven loop used in HVAC systems[J]. Applied Thermal Engineering, 2018, 142: 321-333. |
26 | 陶建云. 泵驱两相流回路系统的热动态特性研究[D]. 南京: 东南大学, 2020. |
Tao J Y. Study on thermal dynamic characteristics of pump-driven two-phase flow loop system[D]. Nanjing: Southeast University, 2020. | |
27 | Xu D, Fang Y D, Hu L R, et al. Experimental investigation on thermal performance of a pumped two-phase battery cooling system using mini-channel cold plate[J]. International Journal of Energy Research, 2021, 45(11): 16078-16090. |
28 | 林郁聪. 基于氟泵增压的复合空调系统实验研究[D]. 广州: 华南理工大学, 2020. |
Lin Y C. Experimental study on compound air conditioning system based on fluorine pump pressurization[D]. Guangzhou: South China University of Technology, 2020. | |
29 | 王绚, 马国远, 周峰. 泵驱动两相冷却系统性能优化与变工质特性研究[J]. 制冷学报, 2018, 39(4): 89-98. |
Wang X, Ma G Y, Zhou F. Performance optimization and characteristics of different refrigerants for pump-driven two-phase cooling system[J]. Journal of Refrigeration, 2018, 39(4): 89-98. | |
30 | 罗丁. 汽车温差发电系统的多物理场耦合机理及瞬态响应特性研究[D]. 镇江: 江苏大学, 2022. |
Luo D. Study on coupling mechanism of multiple physical fields and transient response characteristics of automobile thermoelectric power generation system[D]. Zhenjiang: Jiangsu University, 2022. |
[1] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[2] | Siyu ZHANG, Yonggao YIN, Pengqi JIA, Wei YE. Study on seasonal thermal energy storage characteristics of double U-shaped buried pipe group [J]. CIESC Journal, 2023, 74(S1): 295-301. |
[3] | Minghui CHANG, Lin WANG, Jiajia YUAN, Yifei CAO. Study on the cycle performance of salt solution-storage-based heat pump [J]. CIESC Journal, 2023, 74(S1): 329-337. |
[4] | Huafu ZHANG, Lige TONG, Zhentao ZHANG, Junling YANG, Li WANG, Junhao ZHANG. Recent progress and development trend of mechanical vapor compression evaporation technology [J]. CIESC Journal, 2023, 74(S1): 8-24. |
[5] | Mingkun XIAO, Guang YANG, Yonghua HUANG, Jingyi WU. Numerical study on bubble dynamics of liquid oxygen at a submerged orifice [J]. CIESC Journal, 2023, 74(S1): 87-95. |
[6] | Lisen BI, Bin LIU, Hengxiang HU, Tao ZENG, Zhuorui LI, Jianfei SONG, Hanming WU. Molecular dynamics study on evaporation modes of nanodroplets at rough interfaces [J]. CIESC Journal, 2023, 74(S1): 172-178. |
[7] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[8] | Xiaoxiong FAN, Lifang HAO, Chuigang FAN, Songgeng LI. Study on the catalytic denitrification performance of low-temperature NH3-SCR over LaMnO3/biochar catalyst [J]. CIESC Journal, 2023, 74(9): 3821-3830. |
[9] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[10] | Jiali ZHENG, Zhihui LI, Xinqiang ZHAO, Yanji WANG. Kinetics of ionic liquid catalyzed synthesis of 2-cyanofuran [J]. CIESC Journal, 2023, 74(9): 3708-3715. |
[11] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[12] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[13] | Rubin ZENG, Zhongjie SHEN, Qinfeng LIANG, Jianliang XU, Zhenghua DAI, Haifeng LIU. Study of the sintering mechanism of Fe2O3 nanoparticles based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3353-3365. |
[14] | Linjing YUE, Yihan LIAO, Yuan XUE, Xuejie LI, Yuxing LI, Cuiwei LIU. Study on influence of pit defects on cavitation flow characteristics of throat of thick orifice plates [J]. CIESC Journal, 2023, 74(8): 3292-3308. |
[15] | Yue YANG, Dan ZHANG, Jugan ZHENG, Maoping TU, Qingzhong YANG. Experimental study on flash and mixing evaporation of aqueous NaCl solution [J]. CIESC Journal, 2023, 74(8): 3279-3291. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 86
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 152
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||