1 |
He G, Lin J, Zhang Y, et al. Enabling a rapid and just transition away from coal in China[J]. One Earth, 2020, 3(2): 187-194.
|
2 |
Dai S F, Finkelman R B. Coal as a promising source of critical elements: progress and future prospects[J]. International Journal of Coal Geology, 2018, 186: 155-164.
|
3 |
IEA. Global energy and CO2 status report 2018[R]. IEA, 2018.
|
4 |
国家统计局. 中国第三产业统计年鉴—2019[M]. 北京: 中国统计出版社, 2020.
|
|
National Bureau of Statistics. China Statistical Yearbook of the Tertiary Industry—2019[M]. Beijing: China Statistics Press, 2020.
|
5 |
Zhou L Y, Xu G, Zhao S F, et al. Parametric analysis and process optimization of steam cycle in double reheat ultra-supercritical power plants[J]. Applied Thermal Engineering, 2016, 99: 652-660.
|
6 |
高嵩, 赵洁, 黄迪南. 1000 MW超超临界二次再热燃煤发电技术[J]. 中国电力, 2017, 50(6): 6-11.
|
|
Gao S, Zhao J, Huang D N. Double-reheat coal-fired power generation technologies for 1000 MW ultra-supercritical units[J]. Electric Power, 2017, 50(6): 6-11.
|
7 |
Xu J L, Sun E H, Li M J, et al. Key issues and solution strategies for supercritical carbon dioxide coal fired power plant[J]. Energy, 2018, 157: 227-246.
|
8 |
Sun E H, Xu J L, Li M J, et al. Connected-top-bottom-cycle to cascade utilize flue gas heat for supercritical carbon dioxide coal fired power plant[J]. Energy Conversion and Management, 2018, 172: 138-154.
|
9 |
IEA. China’s Emissions Trading Scheme: Designing Efficient Allowance Allocation[M]. International Energy Agency: OECD, 2020.
|
10 |
帅永, 赵斌, 蒋东方, 等. 中国燃煤高效清洁发电技术现状与展望[J]. 热力发电, 2022, 51(1): 1-10.
|
|
Shuai Y, Zhao B, Jiang D F, et al. Status and prospect of coal-fired high efficiency and clean power generation technology in China[J]. Thermal Power Generation, 2022, 51(1): 1-10.
|
11 |
胡玥, 徐钢, 段栋伟, 等. 碳减排技术发展现状[J]. 热力发电, 2017, 46(2): 1-6, 14.
|
|
Hu Y, Xu G, Duan D W, et al. Current situation and performance comparison of carbon capture technologies[J]. Thermal Power Generation, 2017, 46(2): 1-6, 14.
|
12 |
郭烈锦, 赵亮, 吕友军, 等. 煤炭超临界水气化制氢发电多联产技术[J]. 工程热物理学报, 2017, 38(3): 678-679.
|
|
Guo L J, Zhao L, Lyu Y J, et al. Multi-generation technology of hydrogen production and power generation by coal supercritical water gasification[J]. Journal of Engineering Thermophysics, 2017, 38(3): 678-679.
|
13 |
Ge Z W, Jin H, Guo L J. Hydrogen production by catalytic gasification of coal in supercritical water with alkaline catalysts: explore the way to complete gasification of coal[J]. International Journal of Hydrogen Energy, 2014, 39(34): 19583-19592.
|
14 |
Jin H, Lu Y J, Liao B, et al. Hydrogen production by coal gasification in supercritical water with a fluidized bed reactor[J]. International Journal of Hydrogen Energy, 2010, 35(13): 7151-7160.
|
15 |
Azadi P, Farnood R, Vuillardot C. Estimation of heating time in tubular supercritical water reactors[J]. The Journal of Supercritical Fluids, 2011, 55(3): 1038-1045.
|
16 |
Jin H, Guo S M, Guo L J, et al. A mathematical model and numerical investigation for glycerol gasification in supercritical water with a tubular reactor[J]. The Journal of Supercritical Fluids, 2016, 107: 526-533.
|
17 |
Chen J W, Wang Q T, Xu Z Y, et al. Process in supercritical water gasification of coal: a review of fundamentals, mechanisms, catalysts and element transformation[J]. Energy Conversion and Management, 2021, 237: 114122.
|
18 |
Bermejo M D, Cocero M J, Fernández-Polanco F. A process for generating power from the oxidation of coal in supercritical water[J]. Fuel, 2004, 83(2): 195-204.
|
19 |
Yan Q H, Hou Y W, Luo J R, et al. The exergy release mechanism and exergy analysis for coal oxidation in supercritical water atmosphere and a power generation system based on the new technology[J]. Energy Conversion and Management, 2016, 129: 122-130.
|
20 |
Briola S, Gabbrielli R, Schiavetti M, et al. Supercritical water oxidation of coal in power plants with low CO2 emissions[C]//The International Conference ECOS 2007 (Efficiency, Costs, Optimization, Simulation and Environmental Impact of Energy Systems). Padova, Italy, 2007.
|
21 |
Guo L J, Jin H. Boiling coal in water: hydrogen production and power generation system with zero net CO2 emission based on coal and supercritical water gasification[J]. International Journal of Hydrogen Energy, 2013, 38(29): 12953-12967.
|
22 |
Chen Z W, Zhang X S, Han W, et al. A power generation system with integrated supercritical water gasification of coal and CO2 capture[J]. Energy, 2018, 142: 723-730.
|
23 |
Chen Z W, Zhang X S, Li S, et al. Novel power generation models integrated supercritical water gasification of coal and parallel partial chemical heat recovery[J]. Energy, 2017, 134: 933-942.
|
24 |
El-Emam R S, Dincer I, Naterer G F. Energy and exergy analyses of an integrated SOFC and coal gasification system[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1689-1697.
|
25 |
陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制 [J]. 化工学报, 2023, 74(9): 3888-3902.
|
|
Chen Z W, Wei J J, Zhang Y M. The system integration and energy conversion mechanism of the power technology with integrated supercritical water gasification of coal and SOFC[J]. CIESC Journal, 2023, 74(9): 3888-3902.
|
26 |
Romano M C, Spallina V, Campanari S. Integrating IT-SOFC and gasification combined cycle with methanation reactor and hydrogen firing for near zero-emission power generation from coal[J]. Energy Procedia, 2011, 4: 1168-1175.
|
27 |
Chen Z W, Zhang X S, Gao L, et al. Thermal analysis of supercritical water gasification of coal for power generation with partial heat recovery[J]. Applied Thermal Engineering, 2017, 111: 1287-1295.
|
28 |
卢立宁, 李素芬, 沈胜强, 等. 固体氧化物燃料电池与燃气轮机联合发电系统模拟研究[J]. 热能动力工程, 2004, 19(4): 358-362, 436.
|
|
Lu L N, Li S F, Shen S Q, et al. Simulation study of a combined power generation system incorporating a solid-oxide fuel cell and a gas turbine[J]. Journal of Engineering for Thermal Energy and Power, 2004, 19(4): 358-362, 436.
|
29 |
Doherty W, Reynolds A, Kennedy D. Computer simulation of a biomass gasification-solid oxide fuel cell power system using Aspen Plus[J]. Energy, 2010, 35(12): 4545-4555.
|
30 |
Tanim T, Bayless D J, Trembly J P. Modeling a 5 kWe planar solid oxide fuel cell based system operating on JP-8 fuel and a comparison with tubular cell based system for auxiliary and mobile power applications[J]. Journal of Power Sources, 2014, 245: 986-997.
|
31 |
李裕, 叶爽, 王蔚国. 基于天然气自热重整的SOFC系统性能分析[J]. 化工学报, 2016, 67(4): 1557-1564.
|
|
Li Y, Ye S, Wang W G. Performance analysis of SOFC system based on natural gas autothermal reforming[J]. CIESC Journal, 2016, 67(4): 1557-1564.
|
32 |
郑志美, 刘泰秀, 刘启斌. 太阳能热化学与燃料电池联合的发电系统[J]. 工程热物理学报, 2020, 41(11): 2627-2634.
|
|
Zheng Z M, Liu T X, Liu Q B. A power generation system with solar thermochemical and fuel cell[J]. Journal of Engineering Thermophysics, 2020, 41(11): 2627-2634.
|
33 |
吴海峰, 刘佳维, 刘启斌. 太阳能驱动生物质气化多联产系统研究[J]. 太阳能学报, 2022, 43(1): 465-470.
|
|
Wu H F, Liu J W, Liu Q B. Study on solar-driven biomass gasification polygeneration system[J]. Acta Energiae Solaris Sinica, 2022, 43(1): 465-470.
|
34 |
吴海峰. 聚光太阳能与生物质热化学互补机理及系统集成研究[D]. 重庆: 重庆大学, 2020.
|
|
Wu H F. Study on thermochemical complementary mechanism and system integration of concentrated solar energy and biomass[D]. Chongqing: Chongqing University, 2020.
|
35 |
US Department of Energy. Fuel Cell Handbook[M]. 5th ed. Morgantown, WV: Federal Energy Technology Center, 2000.
|
36 |
Akkaya A V. Electrochemical model for performance analysis of a tubular SOFC[J]. International Journal of Energy Research, 2007, 31(1): 79-98.
|
37 |
Selimovic A. Modelling of solid oxide fuel cells applied to the analysis of integrated systems with gas turbines[D]. Lund University, 2002.
|
38 |
Costamagna P, Honegger K. Modeling of solid oxide heat exchanger integrated stacks and simulation at high fuel utilization[J]. Journal of the Electrochemical Society, 1998, 145(11): 3995-4007.
|
39 |
罗丽琦, 谢广元, 王绍荣. 以气化煤气为燃料的固体氧化物燃料电池热电联供系统设计[J]. 洁净煤技术, 2023, 29(5): 68-79.
|
|
Luo L Q, Xie G Y, Wang S R. Design of combined heat and power supply system based on coal gas SOFC(IGFC-CHP) system[J]. Clean Coal Technology, 2023, 29(5): 68-79.
|
40 |
Abraham F, Dincer I. Thermodynamic analysis of direct urea solid oxide fuel cell in combined heat and power applications[J]. Journal of Power Sources, 2015, 299: 544-556.
|
41 |
Guo L J, Jin H, Lu Y J. Supercritical water gasification research and development in China[J]. The Journal of Supercritical Fluids, 2015, 96: 144-150.
|
42 |
陈新明, 史绍平, 闫姝, 等. 燃烧前CO2捕集技术在IGCC发电中的应用[J]. 化工学报, 2014, 65(8): 3193-3201.
|
|
Chen X M, Shi S P, Yan S, et al. Application of CO2 capture technology before burning in IGCC power generation system[J]. CIESC Journal, 2014, 65(8): 3193-3201.
|
43 |
Shisir A, Ting W. Investigation of air extraction and carbon capture in an integrated gasification combined cycle (IGCC) system[C]//ASME 2021 Power Conference. 2021.
|
44 |
Li X W, Wang T. A parametric investigation of integrated gasification combined cycles with carbon capture[C]//Asme Turbo Expo: Turbine Technical Conference & Exposition. 2012.
|
45 |
Zang G Y, Jia J X, Tejasvi S, et al. Techno-economic comparative analysis of biomass integrated gasification combined cycles with and without CO2 capture[J]. International Journal of Greenhouse Gas Control, 2018, 78: 73-84.
|
46 |
Huang Y, Rezvani S, McIlveen-Wright D, et al. Techno-economic assessment of pulverized coal boilers and IGCC power plants with CO2 capture[J]. Frontiers of Chemical Engineering in China, 2010, 4(2): 196-206.
|
47 |
Lozza G G, Romano M, Giuffrida A. Thermodynamic performance of IGCC with oxy-combustion CO2 capture[C]//1st International Conference on Sustainable Fossil Fuels for Future Energy. 2023.
|
48 |
Sanz W, Mayr M, Jericha H. Thermodynamic and economic evaluation of an IGCC plant based on the Graz cycle for CO2 capture[C]//Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air. Glasgow, UK, 2010: 493-503.
|
49 |
Ahn J H, Seop Kim T. Performance evaluation of a molten carbonate fuel cell/micro gas turbine hybrid system with oxy-combustion carbon capture[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(4): 041502.
|
50 |
Spallina V, Romano M C, Campanari S, et al. A SOFC-based integrated gasification fuel cell cycle with CO2 capture[J]. Journal of Engineering for Gas Turbines and Power, 2011, 133(7): 1-10.
|
51 |
Kanniche M, Gros-Bonnivard R, Jaud P, et al. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture[J]. Applied Thermal Engineering, 2010, 30(1): 53-62.
|
52 |
Kawabata M, Iki N, Kurata O, et al. Energy flow of advanced IGCC with CO2 capture option[C]//Proceedings of ASME 2010 International Mechanical Engineering Congress and Exposition. Vancouver, British Columbia, Canada, 2012: 551-558.
|
53 |
Kawabata M, Kurata O, Iki N, et al. System modeling of exergy recuperated IGCC system with pre- and post-combustion CO2 capture[J]. Applied Thermal Engineering, 2013, 54(1): 310-318.
|
54 |
Duan L Q, Sun S Y, Yue L, et al. Study on a new IGCC (integrated gasification combined cycle) system with CO2 capture by integrating MCFC (molten carbonate fuel cell)[J]. Energy, 2015, 87: 490-503.
|
55 |
Duan L Q, Sun S Y, Yue L, et al. Study on different zero CO2 emission IGCC systems with CO2 capture by integrating OTM[J]. International Journal of Energy Research, 2016, 40(10): 1410-1427.
|
56 |
Asif M, Bak C U, Saleem M W, et al. Performance evaluation of integrated gasification combined cycle (IGCC) utilizing a blended solution of ammonia and 2-amino-2-methyl-1-propanol (AMP) for CO2 capture[J]. Fuel, 2015, 160: 513-524.
|
57 |
Cormos C C, Cormos A M, Agachi S. Power generation from coal and biomass based on integrated gasification combined cycle concept with pre- and post-combustion carbon capture methods[J]. Asia-Pacific Journal of Chemical Engineering, 2009, 4(6): 870-877.
|