CIESC Journal ›› 2024, Vol. 75 ›› Issue (2): 706-714.DOI: 10.11949/0438-1157.20230728
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Changhui LIU(), Tong XIAO, Qingyi LIU, Long GENG, Jiateng ZHAO
Received:
2023-07-13
Revised:
2023-08-27
Online:
2024-04-10
Published:
2024-02-25
Contact:
Changhui LIU
通讯作者:
刘昌会
作者简介:
刘昌会(1987—),男,博士,副教授,liuch915@cumt.edu.cn
基金资助:
CLC Number:
Changhui LIU, Tong XIAO, Qingyi LIU, Long GENG, Jiateng ZHAO. Investigation of the thermal storage mechanism of porous TiO2 enhanced phase change materials[J]. CIESC Journal, 2024, 75(2): 706-714.
刘昌会, 肖桐, 刘庆祎, 耿龙, 赵佳腾. 多孔二氧化钛强化的相变材料储热机理研究[J]. 化工学报, 2024, 75(2): 706-714.
Add to citation manager EndNote|Ris|BibTeX
SP名称 | 干燥时间/h | SP名称 | 干燥时间/h |
---|---|---|---|
SP1 | 0 | SP8 | 21 |
SP2 | 3 | SP9 | 24 |
SP3 | 6 | SP10 | 27 |
SP4 | 9 | SP11 | 33 |
SP5 | 12 | SP12 | 39 |
SP6 | 15 | SP13 | 45 |
SP7 | 18 | SP14 | 51 |
Table 1 Comparison of SP drying time
SP名称 | 干燥时间/h | SP名称 | 干燥时间/h |
---|---|---|---|
SP1 | 0 | SP8 | 21 |
SP2 | 3 | SP9 | 24 |
SP3 | 6 | SP10 | 27 |
SP4 | 9 | SP11 | 33 |
SP5 | 12 | SP12 | 39 |
SP6 | 15 | SP13 | 45 |
SP7 | 18 | SP14 | 51 |
1 | Liu C H, Zhang J H, Liu J, et al. Highly efficient thermal energy storage using a hybrid hypercrosslinked polymer[J]. Angewandte Chemie (International Ed. in English), 2021, 60(25): 13978-13987. |
2 | Liu Q Y, Zhang J H, Liu J, et al. Self-healed inorganic phase change materials for thermal energy harvesting and management[J]. Applied Thermal Engineering, 2023, 219: 119423. |
3 | Atinafu D G, Dong W J, Berardi U, et al. Phase change materials stabilized by porous metal supramolecular gels: gelation effect on loading capacity and thermal performance[J]. Chemical Engineering Journal, 2020, 394: 124806. |
4 | Usman A, Xiong F, Aftab W, et al. Emerging solid-to-solid phase-change materials for thermal-energy harvesting, storage, and utilization[J]. Advanced Materials, 2022, 34(41): e2202457. |
5 | Benner Jingru Z, Shannon Rebecca C, Wu W T, et al. The effect of micro-encapsulation on thermal characteristics of metallic phase change materials[J]. Applied Thermal Engineering, 2022, 207: 118055. |
6 | Chang C, Nie X, Li X X, et al. Bioinspired roll-to-roll solar-thermal energy harvesting within form-stable flexible composite phase change materials[J]. Journal of Materials Chemistry A, 2020, 8(40): 20970-20978. |
7 | Dong X, Mao J F, Geng S B, et al. Study on performance optimization of sodium sulfate decahydrate phase change energy storage materials[J]. Journal of Thermal Analysis and Calorimetry, 2021, 143(6): 3923-3934. |
8 | Fang Y, Qu Z G, Zhang J F, et al. Simultaneous charging and discharging performance for a latent thermal energy storage system with a microencapsulated phase change material[J]. Applied Energy, 2020, 275: 115353. |
9 | Gao Y T, Zhang X L, Xu X F, et al. Application and research progress of phase change energy storage in new energy utilization[J]. Journal of Molecular Liquids, 2021, 343: 117554. |
10 | Hameed G, Ghafoor M A, Yousaf M, et al. Low temperature phase change materials for thermal energy storage: current status and computational perspectives[J]. Sustainable Energy Technologies and Assessments, 2022, 50: 101808. |
11 | Saleel C A. A review on the use of coconut oil as an organic phase change material with its melting process, heat transfer, and energy storage characteristics[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(7): 4451-4472. |
12 | Liu C H, Zong J H, Zhang J H, et al. Knitting aryl network polymers (KAPs)-embedded copper foam enables highly efficient thermal energy storage[J]. Journal of Materials Chemistry A, 2020, 8(30): 15177-15186. |
13 | Liu C H, Song Y, Ze X, et al. Highly efficient thermal energy storage enabled by a hierarchical structured hypercrosslinked polymer/expanded graphite composite[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119068. |
14 | Hu H L. Recent advances of polymeric phase change composites for flexible electronics and thermal energy storage system[J]. Composites Part B Engineering, 2020, 195(15): 108094. |
15 | Liu C H, Du P X, Fang B, et al. Experimental study on a functional microencapsulated phase change material for thermal management[J]. International Communications in Heat and Mass Transfer, 2020, 118: 104876. |
16 | Kumar A, Verma P, Varshney L. An experimental and numerical study on phase change material melting rate enhancement for a horizontal semi-circular shell and tube thermal energy storage system[J]. Journal of Energy Storage, 2022, 45: 103734. |
17 | Li J, Zhu Z Y, Arshad A, et al. Magnetic field-induced enhancement of phase change heat transfer via biomimetic porous structure for solar-thermal energy storage[J]. Journal of Bionic Engineering, 2021, 18(5): 1215-1224. |
18 | Li R X, Zhang Y, Chen H, et al. Exploring thermodynamic potential of multiple phase change thermal energy storage for adiabatic compressed air energy storage system[J]. Journal of Energy Storage, 2021, 33: 102054. |
19 | Yan C N, Meng N, Lyu W, et al. Hierarchical porous hollow carbon spheres derived from spirofluorene- and aniline-linked conjugated microporous polymer for phase change energy storage[J]. Carbon, 2021, 176: 178-187. |
20 | Atinafu D G, Yun B Y, Wi S, et al. A comparative analysis of biochar, activated carbon, expanded graphite, and multi-walled carbon nanotubes with respect to PCM loading and energy-storage capacities[J]. Environmental Research, 2021, 195: 110853. |
21 | Zhao B, Wang Y C, Wang C B, et al. Thermal conductivity enhancement and shape stabilization of phase change thermal storage material reinforced by combustion synthesized porous Al2O3 [J]. Journal of Energy Storage, 2021, 42: 103028. |
22 | Li B M, Shu D, Wang R F, et al. Polyethylene glycol/silica (PEG@SiO2) composite inspired by the synthesis of mesoporous materials as shape-stabilized phase change material for energy storage[J]. Renewable Energy, 2020, 145: 84-92. |
23 | Liu C H, Xu Z, Song Y, et al. A novel shape-stabilization strategy for phase change thermal energy storage[J]. Journal of Materials Chemistry A, 2019, 7(14): 8194-8203. |
24 | McKenna P, Turner W J N, Finn D P. Thermal energy storage using phase change material: analysis of partial tank charging and discharging on system performance in a building cooling application[J]. Applied Thermal Engineering, 2021, 198: 117437. |
25 | Mochane M J, Mokhena T C, Motaung T E, et al. Shape-stabilized phase change materials of polyolefin/wax blends and their composites[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(5): 2951-2963. |
26 | Radomska E, Mika L, Sztekler K, et al. The impact of heat exchangers' constructions on the melting and solidification time of phase change materials[J]. Energies, 2020, 13(18): 4840. |
27 | Liu W, Zhang X L, Ji J, et al. A review on thermal properties improvement of phase change materials and its combination with solar thermal energy storage[J]. Energy Technology, 2021, 9(7): 2100169. |
28 | Louanate A, El Otmani R, Kandoussi K, et al. Dynamic modeling and performance assessment of single and double phase change material layer-integrated buildings in Mediterranean climate zone[J]. Journal of Building Physics, 2021, 44(5): 461-478. |
29 | Ma B, Wei K, Huang X F, et al. Preparation and investigation of NiTi alloy phase-change heat storage asphalt mixture[J]. Journal of Materials in Civil Engineering, 2020, 32(9): 04020250. |
30 | Tie J, Liu X, Tie S N, et al. Packing and properties of composite phase change energy storage materials based on SiC nanowires and Na2SO4·10H2O[J]. Journal of Thermal Analysis and Calorimetry, 2020, 139(2): 855-862. |
31 | Abdul Jaleel S A, Kim T, Baik S. Covalently functionalized leakage-free healable phase-change interface materials with extraordinary high-thermal conductivity and low-thermal resistance[J]. Advanced Materials, 2023, 35(30): e2300956. |
32 | Liu Q Y, Xiao T, Zhao J T, et al. Phase change thermal energy storage enabled by an in situ formed porous TiO2 [J]. Small, 2023, 19(5): e2204998. |
33 | 张建雨, 王丽华, 潘金亮, 等. 南阳五种石油蜡的组成与晶体结构[J]. 华东理工大学学报(自然科学版), 2014, 40(3): 286-291, 301. |
Zhang J Y, Wang L H, Pan J L, et al. Composition and crystal structure of five petroleum waxes of Nanyang[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2014, 40(3): 286-291, 301. |
[1] | Yuhua YIN, Can FANG, Qingfeng YI, Guang LI. Impact of different carbon conductive agents on performance of iron-air battery [J]. CIESC Journal, 2024, 75(2): 685-694. |
[2] | Lingjie WANG, Hailong GAO, Jipeng JIN, Zhihao WANG, Jianbo LI. Influence of pollutants in seawater on performance of reverse electrodialysis stacks [J]. CIESC Journal, 2024, 75(2): 695-705. |
[3] | Liuyang YU, Shubo LIU, Shengzhe JIA, Hang MA, Banglong WAN, Qiwen SU, Jingkang WANG, Weiwei TANG, Yujuan HE, Junbo GONG. Current status and research progress of purification technology of electronic grade phosphoric acid [J]. CIESC Journal, 2024, 75(1): 1-19. |
[4] | Shuangxing ZHANG, Fangchen LIU, Yifei ZHANG, Wenjing DU. Experimental study on phase change heat storage and release performance of R-134a pulsating heat pipe [J]. CIESC Journal, 2023, 74(S1): 165-171. |
[5] | He JIANG, Junfei YUAN, Lin WANG, Guyu XING. Experimental study on the effect of flow sharing cavity structure on phase change flow characteristics in microchannels [J]. CIESC Journal, 2023, 74(S1): 235-244. |
[6] | Yanpeng WU, Qianlong LIU, Dongmin TIAN, Fengjun CHEN. A review of coupling PCM modules with heat pipes for electronic thermal management [J]. CIESC Journal, 2023, 74(S1): 25-31. |
[7] | Hongxin YU, Shuangquan SHAO. Simulation analysis of water crystallization process [J]. CIESC Journal, 2023, 74(S1): 250-258. |
[8] | Yu FU, Xingchong LIU, Hanyu WANG, Haimin LI, Yafei NI, Wenjing ZOU, Yue LEI, Yongshan PENG. Research on F3EACl modification layer for improving performance of perovskite solar cells [J]. CIESC Journal, 2023, 74(8): 3554-3563. |
[9] | Haopeng SHI, Dawen ZHONG, Xuexin LIAN, Junfeng ZHANG. Experimental study on the downward-facing surface enhanced boiling heat transfer of multiscale groove-fin structures [J]. CIESC Journal, 2023, 74(7): 2880-2888. |
[10] | Fangzhe SHI, Yunhua GAN. Numerical simulation of start-up characteristics and heat transfer performance of ultra-thin heat pipe [J]. CIESC Journal, 2023, 74(7): 2814-2823. |
[11] | Meibo XING, Zhongtian ZHANG, Dongliang JING, Hongfa ZHANG. Enhanced phase change energy storage/release properties by combining porous materials and water-based carbon nanotube under magnetic regulation [J]. CIESC Journal, 2023, 74(7): 3093-3102. |
[12] | Xueyan WEI, Yong QIAN. Experimental study on the low to medium temperature oxidation characteristics and kinetics of micro-size iron powder [J]. CIESC Journal, 2023, 74(6): 2624-2638. |
[13] | Zhen LI, Bo ZHANG, Liwei WANG. Development and properties of PEG-EG solid-solid phase change materials [J]. CIESC Journal, 2023, 74(6): 2680-2688. |
[14] | Jialin DAI, Weidong BI, Yumei YONG, Wenqiang CHEN, Hanyang MO, Bing SUN, Chao YANG. Effect of thermophysical properties on the heat transfer characteristics of solid-liquid phase change for composite PCMs [J]. CIESC Journal, 2023, 74(5): 1914-1927. |
[15] | Mingchuan LI, Shuanshi FAN, Fuhai XU, Huidong LU, Xiaojun LI. Existence and Laplace transform of the solution to Stefan phase change model in thermal dissociation hydrate [J]. CIESC Journal, 2023, 74(4): 1746-1754. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||