Jin LI1(), Xiaodong ZHANG1(
), Yangting QIU1, Cheng YAO1, Xicun LU1, Ruwei WEI1, Xiao LUO2, Xuhong QIAN1,2, Youjun YANG1(
)
Received:
2023-12-31
Revised:
2024-03-04
Online:
2024-06-06
Published:
2024-03-11
Contact:
Youjun YANG
李紧1(), 张晓东1(
), 邱杨挺1, 姚成1, 鲁锡存1, 魏茹薇1, 罗潇2, 钱旭红1,2, 杨有军1(
)
通讯作者:
杨有军
作者简介:
李紧(1988—),男,博士,y10170147@mail.ecust.edu.cn基金资助:
CLC Number:
Jin LI, Xiaodong ZHANG, Yangting QIU, Cheng YAO, Xicun LU, Ruwei WEI, Xiao LUO, Xuhong QIAN, Youjun YANG. Dibenzoxanthene dyes with functional handles (EC5) for bioimaging[J]. CIESC Journal, DOI: 10.11949/0438-1157.20231412.
李紧, 张晓东, 邱杨挺, 姚成, 鲁锡存, 魏茹薇, 罗潇, 钱旭红, 杨有军. 带功能手柄的二苯并呫吨类染料(EC5)用于生物成像[J]. 化工学报, DOI: 10.11949/0438-1157.20231412.
1 | Nguyen Q T, Tsien R Y. Fluorescence-guided surgery with live molecular navigation—a new cutting edge[J]. Nature Reviews Cancer, 2013, 13: 653-662. |
2 | Rowe S P, Pomper M G. Molecular imaging in oncology: current impact and future directions[J]. CA: a Cancer Journal for Clinicians, 2022, 72(4): 333-352. |
3 | Weissleder R, Pittet M J. Imaging in the era of molecular oncology[J]. Nature, 2008, 452: 580-589. |
4 | Troyan S L, Kianzad V, Gibbs-Strauss S L, et al. The FLARE™ intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping[J]. Annals of Surgical Oncology, 2009, 16(10): 2943-2952. |
5 | Hong G S, Antaris A L, Dai H J. Near-infrared fluorophores for biomedical imaging[J]. Nature Biomedical Engineering, 2017, 1: 10. |
6 | Ye Z W, Zheng Y, Peng X J, et al. Surpassing the background barrier for multidimensional single-molecule localization super-resolution imaging: a case of lysosome-exclusively turn-on probe[J]. Analytical Chemistry, 2022, 94(22): 7990-7995. |
7 | Zhang X F, Chen L C, Huang Z L, et al. Cyclo-ketal xanthene dyes: a new class of near-infrared fluorophores for super-resolution imaging of live cells[J]. Chemistry, 2021, 27(11): 3688-3693. |
8 | Zheng Y, Ye Z W, Zhang X, et al. Recruiting rate determines the blinking propensity of rhodamine fluorophores for super-resolution imaging[J]. Journal of the American Chemical Society, 2023, 145(9): 5125-5133. |
9 | Zhan Y, Ling S S, Huang H Y, et al. Rapid unperturbed-tissue analysis for intraoperative cancer diagnosis using an enzyme-activated NIR-II nanoprobe[J]. Angewandte Chemie (International Ed. in English), 2021, 60(5): 2637-2642. |
10 | Liu S J, Li Y Y, Kwok R T K, et al. Structural and process controls of AIEgens for NIR-II theranostics[J]. Chemical Science, 2020, 12(10): 3427-3436. |
11 | Chen J Q, Qi J, Chen C, et al. Tocilizumab-conjugated polymer nanoparticles for NIR-II photoacoustic-imaging-guided therapy of rheumatoid arthritis[J]. Advanced Materials, 2020, 32(37): e2003399. |
12 | Li C Y, Chen G C, Zhang Y J, et al. Advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications[J]. Journal of the American Chemical Society, 2020, 142(35): 14789-14804. |
13 | Rasmussen J C, Tan I C, Marshall M V, et al. Lymphatic imaging in humans with near-infrared fluorescence[J]. Current Opinion in Biotechnology, 2009, 20(1): 74-82. |
14 | Daskalaki D, Fernandes E, Wang X Y, et al. Indocyanine green (ICG) fluorescent cholangiography during robotic cholecystectomy: results of 184 consecutive cases in a single institution[J]. Surgical Innovation, 2014, 21(6): 615-621. |
15 | Polom K, Murawa D, Rho Y S, et al. Current trends and emerging future of indocyanine green usage in surgery and oncology: a literature review[J]. Cancer, 2011, 117(21): 4812-4822. |
16 | Carr J A, Franke D, Caram J R, et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(17): 4465-4470. |
17 | Lu X C, Zhuang X L, Dong Y, et al. Super-photostability and super-brightness of EC5 dyes for super-resolution microscopy in the deep near-infrared spectral region[J]. Chemistry of Materials, 2024, 36(2): 949-958. |
18 | Dong Y, Lu X C, Li Y, et al. Spectral and biodistributional engineering of deep near-infrared chromophore[J]. Chinese Chemical Letters, 2023, 34(9): 108154. |
19 | Li J, Dong Y, Wei R W, et al. Stable, bright, and long-fluorescence-lifetime dyes for deep-near-infrared bioimaging[J]. Journal of the American Chemical Society, 2022, 144(31): 14351-14362. |
20 | Lei Z H, Li X R, Luo X, et al. Bright, stable, and biocompatible organic fluorophores absorbing/emitting in the deep near-infrared spectral region[J]. Angewandte Chemie (International Ed. in English), 2017, 56(11): 2979-2983. |
21 | Li J, Wei R W, Yang Y J, et al. A practical synthesis of near-infrared benzannulated xanthenoid dyes[J]. Synlett, 2024, 35(1): 101-108. |
22 | Wei R W, Dong Y, Wang X L, et al. Rigid and photostable shortwave infrared dye absorbing/emitting beyond 1200 nm for high-contrast multiplexed imaging[J]. Journal of the American Chemical Society, 2023, 145(22): 12013-12022. |
23 | Dong Y, Zou Y, Jia X T, et al. An acidic medium-compatible deep-near-infrared dye for in vivo imaging[J]. Smart Molecules, 2023, 1(1): e20230001. |
24 | Liu Y S, Li Y, Koo S, et al. Versatile types of inorganic/organic NIR-IIa/IIb fluorophores: from strategic design toward molecular imaging and theranostics[J]. Chemical Reviews, 2022, 122(1): 209-268. |
25 | Wang S F, Fan Y, Li D D, et al. Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing[J]. Nature Communications, 2019, 10: 1058. |
26 | Ren T B, Wang Z Y, Xiang Z, et al. A general strategy for development of activatable NIR-II fluorescent probes for in vivo high-contrast bioimaging[J]. Angewandte Chemie (International Ed. in English), 2021, 60(2): 800-805. |
27 | Yang Y, Sun C X, Wang S F, et al. Counterion-paired bright heptamethine fluorophores with NIR-II excitation and emission enable multiplexed biomedical imaging[J]. Angewandte Chemie (International Ed. in English), 2022, 61(24): e202117436. |
28 | Cosco E D, Caram J R, Bruns O T, et al. Flavylium polymethine fluorophores for near- and shortwave infrared imaging[J]. Angewandte Chemie (International Ed. in English), 2017, 56(42): 13126-13129. |
29 | Ding B B, Xiao Y L, Zhou H, et al. Polymethine thiopyrylium fluorophores with absorption beyond 1000 nm for biological imaging in the second near-infrared subwindow[J]. Journal of Medicinal Chemistry, 2019, 62(4): 2049-2059. |
30 | 陈丽媛,陈晓健,孙健,等. 近红外吸收染料的应用进展[J]. 染料与染色, 2013, 50(6): 5. |
Chen L Y, Chen J, Sun J, et al. Progress in the application of near-infrared absorbing dyes[J]. Dyestuffs and Coloration, 2013, 50(6): 5. | |
31 | Würth C, Grabolle M, Pauli J, et al. Relative and absolute determination of fluorescence quantum yields of transparent samples[J]. Nature Protocols, 2013, 8: 1535-1550. |
[1] | Zhong JI, Yanling ZHAO, Yumeng CHEN, Linxia GAO, Yipeng WANG, Huan LIU. Adsorption performance and mechanism of ZSM-5 molecular sieves on typical coating VOCs [J]. CIESC Journal, 2024, 75(6): 2332-2343. |
[2] | Wenya WANG, Wei ZHANG, Xiaoling LOU, Ruofei ZHONG, Bingbing CHEN, Junxian YUN. Multi-microtubes formation and simulation of nanocellulose-embedded cryogel microspheres [J]. CIESC Journal, 2024, 75(5): 2060-2071. |
[3] | Shupeng WANG, Jianjun DU, Yao YAO, Jiangli FAN, Xiaojun PENG. Mitochondria-targeted rhodamine photosensitizers for tumor fluorescence imaging [J]. CIESC Journal, 2024, 75(4): 1679-1686. |
[4] | Wenchao JIANG, Zhaochao XU. Fluorescent dyes for super-resolution imaging of organelles [J]. CIESC Journal, 2024, 75(4): 1333-1354. |
[5] | Youming SI, Lingfeng ZHENG, Pengzhong CHEN, Jiangli FAN, Xiaojun PENG. Performance and mechanism of novel antimony oxo cluster photoresist [J]. CIESC Journal, 2024, 75(4): 1705-1717. |
[6] | Weiqi JIN, Yuerong WU, Xia WANG, Li LI, Su QIU, Pan YUAN, Minghe WANG. Progress in infrared imaging detection technology and domestic equipment for industrial gas leakage in chemical industry parks [J]. CIESC Journal, 2023, 74(S1): 32-44. |
[7] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[8] | Bin LI, Zhenghu XU, Shuang JIANG, Tianyong ZHANG. Clean and efficient synthesis of accelerator CBS by hydrogen peroxide catalytic oxidation method [J]. CIESC Journal, 2023, 74(7): 2919-2925. |
[9] | Lixiang ZHU, Moye LUO, Xiaodong ZHANG, Tao LONG, Ran YU. Application of quinone profile method to indicate structure and activity of functional microbial community in trichloroethylene-contaminated soil [J]. CIESC Journal, 2023, 74(6): 2647-2654. |
[10] | Yulong HUANG, Fan LYU, Junjie QIU, Hua ZHANG, Pinjing HE. Physicochemical properties and VOCs molecular characteristics of liquid digestate from anaerobic digestion of putrescible waste [J]. CIESC Journal, 2023, 74(3): 1275-1285. |
[11] | Shengliang ZHONG, Jun ZHANG, Rui SHAN, Yong SUN. Waste sponge derived carbon-based solid acids for levoglucosanone production via cassava residue pyrolysis [J]. CIESC Journal, 2023, 74(11): 4559-4569. |
[12] | Cuiman TANG, Jiaqi LIU, Wei YANG, Zhong SUN, Haonan ZHANG, Bingbing WANG, Xiaohui XU. Progress in the application of covalent organic frameworks in cross-coupling reactions [J]. CIESC Journal, 2023, 74(11): 4397-4418. |
[13] | Zhidong LI, Jiaqi WAN, Ying LIU, Yixi TANG, Wei LIU, Zhongxian SONG, Xuejun ZHANG. α-MnO2/β-MnO2 catalysts synthesized by one-pot method and their catalytic performance for the oxidation of toluene [J]. CIESC Journal, 2022, 73(8): 3615-3624. |
[14] | Yuxin REN, Runfeng XU, Wanying WANG, Pengzhong CHEN, Xiaojun PENG. Synthesis and stability study of anthraquinone dyes for color photoresist [J]. CIESC Journal, 2022, 73(5): 2251-2261. |
[15] | Yunfei WU, Xiaoli LUAN, Fei LIU. Near-infrared spectroscopy online detecting for 2,6-dimethylphenol purity based on transfer learning [J]. CIESC Journal, 2022, 73(2): 782-791. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 95
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 140
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||