CIESC Journal ›› 2024, Vol. 75 ›› Issue (7): 2633-2643.DOI: 10.11949/0438-1157.20240356
• Biochemical engineering and technology • Previous Articles Next Articles
Zheming WU(), Biyun ZHANG, Renchao ZHENG(
)
Received:
2024-04-01
Revised:
2024-05-05
Online:
2024-08-09
Published:
2024-07-25
Contact:
Renchao ZHENG
通讯作者:
郑仁朝
作者简介:
吴哲明(1988—),男,博士,副教授,wuzheming@zjut.edu.cn
基金资助:
CLC Number:
Zheming WU, Biyun ZHANG, Renchao ZHENG. Engineering of nitrilase enantioselectivity for efficient synthesis of brivaracetam[J]. CIESC Journal, 2024, 75(7): 2633-2643.
吴哲明, 张碧云, 郑仁朝. 腈水解酶立体选择性改造及其合成布瓦西坦[J]. 化工学报, 2024, 75(7): 2633-2643.
Primer | Sequence(5′ to 3′) |
---|---|
T133-F | ACCCCA |
T133-R | ACGTTCGAAGTG |
E136-F | ACCCCAACTCACTTC |
E136-R | CCCCAAATCATACG |
F164-F | CTGGCGTGT |
F164-R | TTATGTTCGAA |
P188-F | TTCTGCGATGTAT |
P188-R | CAAAAGCGCTGCC |
F196-F | TGGCGAAGGT |
F196-R | TACGCTGCGC |
E201-F | GCGCAGCGTATG |
E201-R | GACGAATGTTGAT |
I202-F | GCAGCGTATGGAA |
I202-R | GGCCTGACGAATGTT |
N203-F | CGTATGGAAATC |
N203-R | CGTGCTGACGAAT |
I204-F | ATGGAAATCAAC |
I204-R | GTGCGTGCTGACG |
R205-F | GAAATCAACATT |
R205-R | CCAGTGCGTGCTG |
Q206-F | AAATCAACATTCGT |
Q206-R | TCCAGTGCGTG |
Table 1 Primers used in this work
Primer | Sequence(5′ to 3′) |
---|---|
T133-F | ACCCCA |
T133-R | ACGTTCGAAGTG |
E136-F | ACCCCAACTCACTTC |
E136-R | CCCCAAATCATACG |
F164-F | CTGGCGTGT |
F164-R | TTATGTTCGAA |
P188-F | TTCTGCGATGTAT |
P188-R | CAAAAGCGCTGCC |
F196-F | TGGCGAAGGT |
F196-R | TACGCTGCGC |
E201-F | GCGCAGCGTATG |
E201-R | GACGAATGTTGAT |
I202-F | GCAGCGTATGGAA |
I202-R | GGCCTGACGAATGTT |
N203-F | CGTATGGAAATC |
N203-R | CGTGCTGACGAAT |
I204-F | ATGGAAATCAAC |
I204-R | GTGCGTGCTGACG |
R205-F | GAAATCAACATT |
R205-R | CCAGTGCGTGCTG |
Q206-F | AAATCAACATTCGT |
Q206-R | TCCAGTGCGTG |
突变体 | Km/(mmol/L) | Kcat/min-1 | (Kcat/Km)/ (L/(mmol·min)) |
---|---|---|---|
PgNIT | 1.38±0.19 | 21.37±1.80 | 15.48 |
F164W | 0.44±0.06 | 12.91±0.79 | 29.34 |
F164W/I202R | 1.68±0.42 | 6.99±1.22 | 4.16 |
Table 2 Kinetic parameters of PgNIT and variants towards 3-cyanocapronitrile
突变体 | Km/(mmol/L) | Kcat/min-1 | (Kcat/Km)/ (L/(mmol·min)) |
---|---|---|---|
PgNIT | 1.38±0.19 | 21.37±1.80 | 15.48 |
F164W | 0.44±0.06 | 12.91±0.79 | 29.34 |
F164W/I202R | 1.68±0.42 | 6.99±1.22 | 4.16 |
突变体 | E | 比酶活/(U/mg) | 半衰期t1/2/h |
---|---|---|---|
PgNIT | 18±4 | 2.48±0.06 | 63.3±0.61 |
F164W | 30±2 | 3.47±0.11 | 55.5±1.71 |
F164W/I202R | 112±5 | 1.29±0.06 | 39.7±2.22 |
Table 3 Kinetic parameters of PgNIT and variants towards 3-cyanocapronitrile
突变体 | E | 比酶活/(U/mg) | 半衰期t1/2/h |
---|---|---|---|
PgNIT | 18±4 | 2.48±0.06 | 63.3±0.61 |
F164W | 30±2 | 3.47±0.11 | 55.5±1.71 |
F164W/I202R | 112±5 | 1.29±0.06 | 39.7±2.22 |
1 | Rolan P, Sargentini-Maier M L, Pigeolet E, et al. The pharmacokinetics, cns pharmacodynamics and adverse event profile of brivaracetam after multiple increasing oral doses in healthy men[J]. British Journal of Clinical Pharmacology, 2008, 66(1): 71-75. |
2 | Markham A. Brivaracetam: first global approval[J]. Drugs, 2016, 76(4): 517-522. |
3 | Stephen L J, Brodie M J. Brivaracetam: a novel antiepileptic drug for focal-onset seizures[J]. Therapeutic Advances in Neurological Disorders, 2018, 11: 1-10. |
4 | 洪雪姣, 赵淑娟, 王漪檬, 等. 布瓦西坦的药理作用及临床评价[J]. 中国临床药理学杂志, 2017, 33(15): 1491-1493, 1502. |
Hong X J, Zhao S J, Wang Y M, et al. Pharmacological effects and clinical evaluation of brivaracetam[J]. The Chinese Journal of Clinical Pharmacology, 2017, 33(15): 1491-1493, 1502. | |
5 | 杨君义, 李永法, 徐飞. 治疗部分性癫痫发作新药:布瓦西坦[J]. 中国新药与临床杂志, 2017, 36(1): 20-23. |
Yang J Y, Li Y F, Xu F. New drug for partial epilepsies: brivaracetam[J]. Chinese Journal of New Drugs and Clinical Remedies, 2017, 36(1): 20-23. | |
6 | Russo E, Citraro R, Mula M. The preclinical discovery and development of brivaracetam for the treatment of focal epilepsy[J]. Expert Opinion on Drug Discovery, 2017, 12(11): 1169-1178. |
7 | Mercier J, Archen L, Bollu V, et al. Discovery of heterocyclic nonacetamide synaptic vesicle protein 2A (SV2A) ligands with single-digit nanomolar potency: opening avenues towards the first SV2A positron emission tomography (PET) ligands[J]. ChemMedChem, 2014, 9(4): 693-698. |
8 | Schülé A, Merschaert A, Szczepaniak C, et al. A biocatalytic route to the novel antiepileptic drug brivaracetam[J]. Organic Process Research & Development, 2016, 20(9): 1566-1575. |
9 | 郑仁朝, 郑裕国, 詹侃, 等. 一种酶法合成布瓦西坦手性中间体的方法: 114908075A[P]. 2022-08-16. |
Zheng R C, Zheng Y G, Zhan K, et al. The invention relates to an enzymatic synthesis method of boisetan chiral intermediate: 114908075A [P]. 2022-08-16. | |
10 | Xue Y P, Shi C C, Xu Z, et al. Design of nitrilases with superior activity and enantioselectivity towards sterically hindered nitrile by protein engineering[J]. Advanced Synthesis & Catalysis, 2015, 357(8): 1741-1750. |
11 | Desantis G, Wong K, Farwell B, et al. Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (GSSM)[J]. Journal of the American Chemical Society, 2003, 125(38): 11476-11477. |
12 | Yu S S, Li J L, Yao P Y, et al. Inverting the enantiopreference of nitrilase-catalyzed desymmetric hydrolysis of prochiral dinitriles by reshaping the binding pocket with a mirror-image strategy[J]. Angewandte Chemie International Edition, 2021, 60(7): 3679-3684. |
13 | Chen Z, Wang H L, Yang L, et al. Significantly enhancing the stereoselectivity of a regioselective nitrilase for the production of (S)-3-cyano-5-methylhexanoic acid using an MM/PBSA method[J]. Chemical Communications, 2021, 57(7): 931-934. |
14 | Gong J S, Lu Z M, Li H, et al. Nitrilases in nitrile biocatalysis: recent progress and forthcoming research[J]. Microbial Cell Factories, 2012, 11(1): 142. |
15 | Martínková L, Rucká L, Nešvera J, et al. Recent advances and challenges in the heterologous production of microbial nitrilases for biocatalytic applications[J]. World Journal of Microbiology and Biotechnology, 2017, 33(1): 8. |
16 | Banerjee A, Sharma R, Banerjee U C. A rapid and sensitive fluorometric assay method for the determination of nitrilase activity[J]. Biotechnology and Applied Biochemistry, 2003, 37(3): 289-293. |
17 | Lu X F, Diao H J, Wu Z M, et al. Engineering of reaction specificity, enantioselectivity, and catalytic activity of nitrilase for highly efficient synthesis of pregabalin precursor[J]. Biotechnology and Bioengineering, 2022, 119(9): 2399-2412. |
18 | Rakels J L, Straathof A J, Heijnen J J. A simple method to determine the enantiomeric ratio in enantioselective biocatalysis[J]. Enzyme and Microbial Technology, 1993, 15(12): 1051-1056. |
19 | Mirdita M, Schütze K, Moriwaki Y, et al. ColabFold: making protein folding accessible to all[J]. Nature Methods, 2022, 19(6): 679-682. |
20 | Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold[J]. Nature, 2021, 596(7873): 583-589. |
21 | Richard E, Michael O N, Alexander P, et al. Protein complex prediction with AlphaFold-Multimer[J]. Communications Biology, 2023, 6(1):1140. |
22 | Hooft R W W, Sander C, Vriend G. Objectively judging the quality of a protein structure from a ramachandran plot[J]. Bioinformatics, 1997, 13(4): 425-430. |
23 | Morris G M, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility[J]. Journal of Computational Chemistry, 2009, 30(16): 2785-2791. |
24 | Berendsen H J C, van der Spoel D, van Drunen R. GROMACS: a message-passing parallel molecular dynamics implementation[J]. Computer Physics Communications, 1995, 91(1): 43-56. |
25 | Pronk S, Páll S, Schulz R, et al. Gromacs 4.5: a high-throughput and highly parallel open source molecular simulation toolkit[J]. Bioinformatics, 2013, 29(7): 845-854. |
26 | Lindorff-Larsen K, Piana S, Palmo K, et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field[J]. Proteins, 2010, 78(8): 1950-1958. |
27 | Jorgensen W L, Chandrasekhar J, Madura J D, et al. Comparison of simple potential functions for simulating liquid water[J]. The Journal of Chemical Physics, 1983, 79(2): 926-935. |
28 | Liu Y X, Stone J E, Cai E, et al. VMD as a software for visualization and quantitative analysis of super resolution imaging and single particle tracking[J]. Biophysical Journal, 2014, 106(2): 202. |
29 | Seeliger D, de Groot B L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina[J]. Journal of Computer-Aided Molecular Design, 2010, 24(5): 417-422. |
30 | Li M, Liu X G, Zhang S L, et al. Deciphering the binding mechanism of inhibitors of the SARS-CoV-2 main protease through multiple replica accelerated molecular dynamics simulations and free energy landscapes[J]. Physical Chemistry Chemical Physics, 2022, 24(36): 22129-22143. |
31 | Thuku R N, Brady D, Benedik M J, et al. Microbial nitrilases: versatile, spiral forming, industrial enzymes[J]. Journal of Applied Microbiology, 2009, 106(3): 703-727. |
32 | Lu X F, Tang X L, Xu C H, et al. Engineering residues on C interface to improve thermostability of nitrilase for biosynthesis of pregabalin precursor[J]. AIChE Journal, 2023, 69(11): 18211. |
33 | Zhao L, Ma Z, Wang Q, et al. Engineering the thermostability of sucrose synthase by reshaping the subunit interaction contributes to efficient UDP-glucose production[J]. Journal of Agricultural and Food Chemistry, 2023, 71(8): 3832-3841. |
34 | Park J M, Mulelu A, Sewell B T, et al. Probing an interfacial surface in the cyanide dihydratase from bacillus pumilus, a spiral forming nitrilase[J]. Frontiers in Microbiology, 2016, 6: 1479. |
35 | Woodward J D, Trompetter I, Sewell B T, et al. Substrate specificity of plant nitrilase complexes is affected by their helical twist[J]. Communications Biology, 2018, 1(1): 186. |
36 | Yu H, Dalby P A. A beginner’s guide to molecular dynamics simulations and the identification of cross-correlation networks for enzyme engineering[J]. Methods in Enzymology, 2020, 643: 15-49. |
37 | Tang X L, Wen P F, Zheng W, et al. Bidirectional regulation of nitrilase reaction specificity by tuning the characteristic distances between key residues and substrate[J]. ACS Catalysis, 2023, 13(15): 10282-10294. |
[1] | Hansong QIN, Guoliang LI, Hao YAN, Xiang FENG, Yibin LIU, Xiaobo CHEN, Chaohe YANG. Theoretical study on the adsorption and diffusion behavior of methyl oleate catalytic cracking in hierarchical ZSM-5 zeolite [J]. CIESC Journal, 2024, 75(5): 1870-1881. |
[2] | Kang ZHOU, Jianxin WANG, Hai YU, Chaoliang WEI, Fengqi FAN, Xinhao CHE, Lei ZHANG. Foam rupture properties of mineral base oils based on molecular dynamics simulation [J]. CIESC Journal, 2024, 75(4): 1668-1678. |
[3] | Dongfei LIU, Fan ZHANG, Zheng LIU, Diannan LU. A review of machine learning potentials and their applications to molecular simulation [J]. CIESC Journal, 2024, 75(4): 1241-1255. |
[4] | Zheng ZHANG, Wuqiong WANG, Yajing ZHANG, Kangjun WANG, Yuanhui JI. Research progress in theoretical calculation of pharmaceutical formulation design [J]. CIESC Journal, 2024, 75(4): 1429-1438. |
[5] | Shihao LI, Zhenhua WU, Zhanfeng ZHAO, Hong WU, Dong YANG, Jiafu SHI, Zhongyi JIANG. Electron transfer, proton transfer and molecule transfer in chemical processes [J]. CIESC Journal, 2024, 75(3): 1052-1064. |
[6] | Fan WU, Xudong PENG, Jinbo JIANG, Xiangkai MENG, Yangyang LIANG. Study on adaptability of molecular dynamics in predicting density and viscosity of natural gas [J]. CIESC Journal, 2024, 75(2): 450-462. |
[7] | Yepin CHENG, Daqing HU, Yisha XU, Huayan LIU, Hanfeng LU, Guokai CUI. Application of ionic liquid-based deep eutectic solvents for CO2 conversion [J]. CIESC Journal, 2023, 74(9): 3640-3653. |
[8] | Minghao SONG, Fei ZHAO, Shuqing LIU, Guoxuan LI, Sheng YANG, Zhigang LEI. Multi-scale simulation and study of volatile phenols removal from simulated oil by ionic liquids [J]. CIESC Journal, 2023, 74(9): 3654-3664. |
[9] | Jianbo HU, Hongchao LIU, Qi HU, Meiying HUANG, Xianyu SONG, Shuangliang ZHAO. Molecular dynamics simulation insight into translocation behavior of organic cage across the cellular membrane [J]. CIESC Journal, 2023, 74(9): 3756-3765. |
[10] | Jiajia ZHAO, Shixiang TIAN, Peng LI, Honggao XIE. Microscopic mechanism of SiO2-H2O nanofluids to enhance the wettability of coal dust [J]. CIESC Journal, 2023, 74(9): 3931-3945. |
[11] | Linzheng WANG, Yubing LU, Ruizhi ZHANG, Yonghao LUO. Analysis on thermal oxidation characteristics of VOCs based on molecular dynamics simulation [J]. CIESC Journal, 2023, 74(8): 3242-3255. |
[12] | Ji CHEN, Ze HONG, Zhao LEI, Qiang LING, Zhigang ZHAO, Chenhui PENG, Ping CUI. Study on coke dissolution loss reaction and its mechanism based on molecular dynamics simulations [J]. CIESC Journal, 2023, 74(7): 2935-2946. |
[13] | Yaxin CHEN, Hang YUAN, Guanzhang LIU, Lei MAO, Chun YANG, Ruifang ZHANG, Guangya ZHANG. Advances in enzyme self-immobilization mediated by protein nanocages [J]. CIESC Journal, 2023, 74(7): 2773-2782. |
[14] | Xiaoling TANG, Jiarui WANG, Xuanye ZHU, Renchao ZHENG. Biosynthesis of chiral epichlorohydrin by halohydrin dehalogenase based on Pickering emulsion system [J]. CIESC Journal, 2023, 74(7): 2926-2934. |
[15] | Ming DONG, Jinliang XU, Guanglin LIU. Molecular dynamics study on heterogeneous characteristics of supercritical water [J]. CIESC Journal, 2023, 74(7): 2836-2847. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||