CIESC Journal ›› 2024, Vol. 75 ›› Issue (7): 2644-2655.DOI: 10.11949/0438-1157.20240026
• Energy and environmental engineering • Previous Articles Next Articles
Hongzhe YAO1(), Feiyu HUANG1, Song YANG1, Mei ZHONG1, Zhenghua DAI1,2(
)
Received:
2024-01-05
Revised:
2024-03-05
Online:
2024-08-09
Published:
2024-07-25
Contact:
Zhenghua DAI
姚宏哲1(), 黄飞宇1, 杨松1, 钟梅1, 代正华1,2(
)
通讯作者:
代正华
作者简介:
姚宏哲(1998—),男,硕士研究生,1693982164@qq.com
基金资助:
CLC Number:
Hongzhe YAO, Feiyu HUANG, Song YANG, Mei ZHONG, Zhenghua DAI. Kinetic modeling of the high-temperature rapid pyrolysis auto-reaction network of heavy oil[J]. CIESC Journal, 2024, 75(7): 2644-2655.
姚宏哲, 黄飞宇, 杨松, 钟梅, 代正华. 重质油高温快速热解自动反应网络的动力学建模[J]. 化工学报, 2024, 75(7): 2644-2655.
数据库 | 二十烷 | 十氢萘 | 乙苯 |
---|---|---|---|
热力学库 | ‘primaryThermoLibrary’ | ‘DFT_QCI_thermo’ | ‘primaryThermoLibrary’ |
反应库 | — | — | ‘AromaticsPyrolysis’ |
动力学库 | ‘H_Abstraction’、‘R_Addition_MultipleBond’、‘R_Recombination’、‘Disproportionation’、‘Intra_R_Add_Exocyclic’、‘Intra_R_Add_Endocyclic’ |
Table 1 Selection of model compound database
数据库 | 二十烷 | 十氢萘 | 乙苯 |
---|---|---|---|
热力学库 | ‘primaryThermoLibrary’ | ‘DFT_QCI_thermo’ | ‘primaryThermoLibrary’ |
反应库 | — | — | ‘AromaticsPyrolysis’ |
动力学库 | ‘H_Abstraction’、‘R_Addition_MultipleBond’、‘R_Recombination’、‘Disproportionation’、‘Intra_R_Add_Exocyclic’、‘Intra_R_Add_Endocyclic’ |
进料 | 进料速度/(ml/min) | 载气流量/(ml/min) | 温度/℃ | 进料时间/s |
---|---|---|---|---|
二十烷 | 2 | 400 | 600~1000 | 600 |
十氢萘 | 2 | 400 | 600~1000 | 600 |
乙苯 | 2 | 400 | 600~1000 | 600 |
二十烷∶十氢萘∶乙苯(1∶1∶1) | 2 | 400 | 600~1000 | 600 |
二十烷∶十氢萘∶乙苯(1∶3∶6) | 2 | 400 | 600~1000 | 600 |
Table 2 Operating conditions for rapid high-temperature pyrolysis of model compounds
进料 | 进料速度/(ml/min) | 载气流量/(ml/min) | 温度/℃ | 进料时间/s |
---|---|---|---|---|
二十烷 | 2 | 400 | 600~1000 | 600 |
十氢萘 | 2 | 400 | 600~1000 | 600 |
乙苯 | 2 | 400 | 600~1000 | 600 |
二十烷∶十氢萘∶乙苯(1∶1∶1) | 2 | 400 | 600~1000 | 600 |
二十烷∶十氢萘∶乙苯(1∶3∶6) | 2 | 400 | 600~1000 | 600 |
项目 | 二十烷 | 十氢萘 | 乙苯 | ||
---|---|---|---|---|---|
机制合并 | 物质 | 230 | 反应 | 1468 | |
用户指定容差 | 0.05 | 0.1 | 0.1 | ||
(DD∶HH∶MM∶SS) 执行时间 | 00∶00∶07∶31 | 00∶21∶51∶12 | 05∶05∶20∶56 | ||
核心物质 | 64 | 83 | 122 | ||
核心反应 | 477 | 545 | 477 | ||
边缘物质 | 839 | 7980 | 5900 | ||
边缘反应 | 5449 | 19063 | 9014 |
Table 3 Simulation results of the mechanism of the reaction
项目 | 二十烷 | 十氢萘 | 乙苯 | ||
---|---|---|---|---|---|
机制合并 | 物质 | 230 | 反应 | 1468 | |
用户指定容差 | 0.05 | 0.1 | 0.1 | ||
(DD∶HH∶MM∶SS) 执行时间 | 00∶00∶07∶31 | 00∶21∶51∶12 | 05∶05∶20∶56 | ||
核心物质 | 64 | 83 | 122 | ||
核心反应 | 477 | 545 | 477 | ||
边缘物质 | 839 | 7980 | 5900 | ||
边缘反应 | 5449 | 19063 | 9014 |
Fig.6 Reaction pathway analysis of the main gas generated by the pyrolysis of a mixture of eicosane, decahydronaphthalene, and ethylbenzene in a ratio of 1∶3∶6
序号 | 主要基元反应 | 动力学参数 | ||
---|---|---|---|---|
指前因子 | 温度指数 | 活化能/(kJ/mol) | ||
1 | H(2)+CH4(5) | 4.10×103 | 3.16 | 8.76 |
2 | H(2)+C3H6(213) | 1.36×108 | 1.64 | 1.86 |
3 | H(2)+C2H4(7) | 2.40×102 | 3.62 | 11.27 |
4 | H(2)+C10H18(120) | 9.52×10-1 | 4.34 | 2.00 |
5 | H(2)+C10H18(120) | 2.55×102 | 3.68 | 4.70 |
6 | H(2)+C10H18(120) | 2.55×102 | 3.68 | 4.70 |
7 | H(2)+C8H10(1) | 1.60×1013 | 0 | 8.17 |
8 | H(2)+C6H6(29) | 4.57×108 | 1.88 | 14.84 |
9 | H(2)+C10H16(124) | 2.55×102 | 3.68 | 4.70 |
10 | H(2)+C7H8(23) | 7.54×104 | 2.57 | 3.15 |
11 | H(2)+C7H8(22) | 8.94×10-1 | 4.34 | -0.40 |
12 | H(2)+C8H8(27) | 2.81×105 | 2.41 | 8.84 |
13 | H(2)+C10H16(126) | 1.46×108 | 1.64 | 1.37 |
14 | CH3(4)+C7H7(9) | 6.75×1016 | -1.29 | 0 |
15 | H(2)+C10H16(126) | 1.46×108 | 1.64 | 1.37 |
16 | C2H4(7)+C2H5(6) | 4.24×103 | 2.41 | 5.06 |
17 | H(2)+C2H3(8)(M) | 3.90×1013 | 0.20 | 0 |
18 | H(2)+C4H8(222) | 3.01×108 | 1.60 | 2.40 |
19 | H(2)+C2H4(7)(M) | 1.40×109 | 1.46 | 1.36 |
20 | C5H10(195) | 8.70×1011 | 0 | 55.69 |
21 | CH3(4)+C3H6(213) | 7.20×10-2 | 4.25 | 7.53 |
22 | CH3(4)+C8H8(27) | 3.21×107 | 1.82 | 14.16 |
23 | CH3(4)+C2H4(7) | 6.00×107 | 1.56 | 16.63 |
24 | CH3(4)+C8H10(1) | 6.00×1012 | 0 | 12.62 |
25 | CH3(4)+C8H8(27) | 3.21×107 | 1.82 | 14.16 |
26 | CH3(4)+C7H8(23) | 1.07×106 | 2.27 | 4.39 |
27 | CH3(4)+C10H18(120) | 6.42×10-2 | 4.34 | 6.61 |
28 | CH3(4)+C10H18(120) | 6.42×10-2 | 4.34 | 6.61 |
29 | CH3(4)+C6H6(29) | 5.15×103 | 2.90 | 15.31 |
30 | CH3(4)+C8H7(32) | 8.20×106 | 1.88 | -1.12 |
31 | CH3(4)+C8H8(27) | 9.80×10-2 | 4.01 | 12.90 |
32 | CH3(4)+C10H16(124) | 6.42×10-2 | 4.34 | 6.61 |
33 | CH3(4)+C10H18(120) | 2.26×10-2 | 4.34 | 7.69 |
34 | C7H7(9) | 9.78×109 | 0.58 | 28.56 |
35 | C4H6(133)+C6H10(132) | 1.71×104 | 1.53 | 23.41 |
36 | H(2)+C10H16(125) | 7.72×107 | 1.64 | 2.17 |
37 | H(2)+C8H8(27) | 6.00×107 | 1.64 | 1.55 |
38 | H(2)+allyl(224) | 5.84×1013 | 0.18 | 0.12 |
39 | H(2)+C3H6(213) | 3.36×103 | 3.14 | 4.29 |
40 | CH3(4)+C3H6(213) | 2.10×104 | 2.41 | 5.32 |
41 | C2H5(6)+allyl(224) | 1.37×1014 | -0.35 | -0.13 |
42 | H(2)+C3H6(213) | 1.84×109 | 1.55 | 1.57 |
43 | C3H6(213)+npropyl(172) | 2.13×103 | 2.41 | 4.75 |
44 | C7H8(22)+C8H7(31) | 2.90×10-2 | 4.34 | -5.60 |
45 | C2H4(7)+C8H12(130) | 2.64×1011 | 0 | 29.61 |
46 | C2H4(7)+C4H6(133) | 1.00×1010 | 0 | 20.00 |
47 | C2H3(8)+C8H8(27) | 3.91×10-3 | 4.50 | 3.67 |
48 | C2H3(8)+C8H10(1) | 5.56×10-3 | 4.34 | 0.20 |
49 | C2H4(7)+npropyl(172) | 4.24×103 | 2.41 | 5.06 |
50 | C2H4(7)+C8H7(31) | 2.20×10-2 | 4.40 | 4.75 |
51 | C2H4(7)+C8H7(33) | 2.20×10-2 | 4.40 | 4.75 |
52 | H(2)+CH3(4)(M) | 2.10×1014 | 0 | 0 |
53 | H(2)+C8H9(12) | 9.17×1013 | 0.12 | 0 |
54 | C8H9(12)+C8H11(16) | 8.43×1011 | 0 | 0 |
55 | CH3(4)+C8H11(16) | 3.38×1011 | -0.18 | -0.01 |
56 | H(2)+C8H10(1) | 8.76×107 | 1.71 | 6.09 |
57 | 2CH3(4) | 5.40×1013 | 0 | 16.06 |
58 | CH3(4)+C2H5(6) | 9.00×1011 | 0 | 0 |
59 | C2H5(6)+C8H9(12) | 6.90×1013 | -0.35 | 0 |
60 | 2H(2)+H2(3) | 1.00×1017 | -0.60 | 0 |
61 | 2H(2)(M) | 7.00×1017 | -1.00 | 0 |
62 | H(2)+C8H11(16) | 1.00×1010 | 0 | 0 |
63 | H(2)+C2H5(6) | 1.08×1013 | 0 | 0 |
64 | C2H3(8)+C8H11(16) | 8.43×1011 | 0 | 0 |
65 | C2H3(8)+C8H10(1) | 5.40×10-4 | 4.55 | 3.50 |
66 | C2H3(8)+C2H5(6) | 4.56×1014 | -0.70 | 0 |
67 | H(2)+C10H17(122) | 1.95×1012 | 0.35 | 0 |
68 | H(2)+C10H17(123) | 1.58×1013 | -0.22 | 0 |
69 | C10H17(122) | 6.76×109 | 0.88 | 38.00 |
70 | C10H17(122) | 2.84×107 | 1.625 | 35.45 |
71 | C10H17(122) | 2.28×10-3 | 3.95 | 11.17 |
72 | C10H17(122) | 5.64×10-2 | 3.28 | 5.91 |
73 | C10H17(122) | 6.76×109 | 0.88 | 38.00 |
74 | C10H17(122)+C10H18(120) | 1.03×10-2 | 4.29 | 7.71 |
75 | C2H5(6)+C10H17(123) | 6.33×1014 | -0.70 | 0 |
76 | npropyl(172)+C17H35(171) | 3.19×1016 | -1.18 | 0 |
77 | CH3(4)+C2H4(7) | 4.18×104 | 2.41 | 5.63 |
78 | CH3(4)+npropyl(172) | 2.30×1013 | -0.32 | 0 |
79 | H(2)+npropyl(172) | 3.62×1012 | 0 | 0 |
80 | allyl(224)+npropyl(172) | 5.80×1012 | 0 | -0.13 |
Table 4 Translation of the main elementary reaction kinetic parameters
序号 | 主要基元反应 | 动力学参数 | ||
---|---|---|---|---|
指前因子 | 温度指数 | 活化能/(kJ/mol) | ||
1 | H(2)+CH4(5) | 4.10×103 | 3.16 | 8.76 |
2 | H(2)+C3H6(213) | 1.36×108 | 1.64 | 1.86 |
3 | H(2)+C2H4(7) | 2.40×102 | 3.62 | 11.27 |
4 | H(2)+C10H18(120) | 9.52×10-1 | 4.34 | 2.00 |
5 | H(2)+C10H18(120) | 2.55×102 | 3.68 | 4.70 |
6 | H(2)+C10H18(120) | 2.55×102 | 3.68 | 4.70 |
7 | H(2)+C8H10(1) | 1.60×1013 | 0 | 8.17 |
8 | H(2)+C6H6(29) | 4.57×108 | 1.88 | 14.84 |
9 | H(2)+C10H16(124) | 2.55×102 | 3.68 | 4.70 |
10 | H(2)+C7H8(23) | 7.54×104 | 2.57 | 3.15 |
11 | H(2)+C7H8(22) | 8.94×10-1 | 4.34 | -0.40 |
12 | H(2)+C8H8(27) | 2.81×105 | 2.41 | 8.84 |
13 | H(2)+C10H16(126) | 1.46×108 | 1.64 | 1.37 |
14 | CH3(4)+C7H7(9) | 6.75×1016 | -1.29 | 0 |
15 | H(2)+C10H16(126) | 1.46×108 | 1.64 | 1.37 |
16 | C2H4(7)+C2H5(6) | 4.24×103 | 2.41 | 5.06 |
17 | H(2)+C2H3(8)(M) | 3.90×1013 | 0.20 | 0 |
18 | H(2)+C4H8(222) | 3.01×108 | 1.60 | 2.40 |
19 | H(2)+C2H4(7)(M) | 1.40×109 | 1.46 | 1.36 |
20 | C5H10(195) | 8.70×1011 | 0 | 55.69 |
21 | CH3(4)+C3H6(213) | 7.20×10-2 | 4.25 | 7.53 |
22 | CH3(4)+C8H8(27) | 3.21×107 | 1.82 | 14.16 |
23 | CH3(4)+C2H4(7) | 6.00×107 | 1.56 | 16.63 |
24 | CH3(4)+C8H10(1) | 6.00×1012 | 0 | 12.62 |
25 | CH3(4)+C8H8(27) | 3.21×107 | 1.82 | 14.16 |
26 | CH3(4)+C7H8(23) | 1.07×106 | 2.27 | 4.39 |
27 | CH3(4)+C10H18(120) | 6.42×10-2 | 4.34 | 6.61 |
28 | CH3(4)+C10H18(120) | 6.42×10-2 | 4.34 | 6.61 |
29 | CH3(4)+C6H6(29) | 5.15×103 | 2.90 | 15.31 |
30 | CH3(4)+C8H7(32) | 8.20×106 | 1.88 | -1.12 |
31 | CH3(4)+C8H8(27) | 9.80×10-2 | 4.01 | 12.90 |
32 | CH3(4)+C10H16(124) | 6.42×10-2 | 4.34 | 6.61 |
33 | CH3(4)+C10H18(120) | 2.26×10-2 | 4.34 | 7.69 |
34 | C7H7(9) | 9.78×109 | 0.58 | 28.56 |
35 | C4H6(133)+C6H10(132) | 1.71×104 | 1.53 | 23.41 |
36 | H(2)+C10H16(125) | 7.72×107 | 1.64 | 2.17 |
37 | H(2)+C8H8(27) | 6.00×107 | 1.64 | 1.55 |
38 | H(2)+allyl(224) | 5.84×1013 | 0.18 | 0.12 |
39 | H(2)+C3H6(213) | 3.36×103 | 3.14 | 4.29 |
40 | CH3(4)+C3H6(213) | 2.10×104 | 2.41 | 5.32 |
41 | C2H5(6)+allyl(224) | 1.37×1014 | -0.35 | -0.13 |
42 | H(2)+C3H6(213) | 1.84×109 | 1.55 | 1.57 |
43 | C3H6(213)+npropyl(172) | 2.13×103 | 2.41 | 4.75 |
44 | C7H8(22)+C8H7(31) | 2.90×10-2 | 4.34 | -5.60 |
45 | C2H4(7)+C8H12(130) | 2.64×1011 | 0 | 29.61 |
46 | C2H4(7)+C4H6(133) | 1.00×1010 | 0 | 20.00 |
47 | C2H3(8)+C8H8(27) | 3.91×10-3 | 4.50 | 3.67 |
48 | C2H3(8)+C8H10(1) | 5.56×10-3 | 4.34 | 0.20 |
49 | C2H4(7)+npropyl(172) | 4.24×103 | 2.41 | 5.06 |
50 | C2H4(7)+C8H7(31) | 2.20×10-2 | 4.40 | 4.75 |
51 | C2H4(7)+C8H7(33) | 2.20×10-2 | 4.40 | 4.75 |
52 | H(2)+CH3(4)(M) | 2.10×1014 | 0 | 0 |
53 | H(2)+C8H9(12) | 9.17×1013 | 0.12 | 0 |
54 | C8H9(12)+C8H11(16) | 8.43×1011 | 0 | 0 |
55 | CH3(4)+C8H11(16) | 3.38×1011 | -0.18 | -0.01 |
56 | H(2)+C8H10(1) | 8.76×107 | 1.71 | 6.09 |
57 | 2CH3(4) | 5.40×1013 | 0 | 16.06 |
58 | CH3(4)+C2H5(6) | 9.00×1011 | 0 | 0 |
59 | C2H5(6)+C8H9(12) | 6.90×1013 | -0.35 | 0 |
60 | 2H(2)+H2(3) | 1.00×1017 | -0.60 | 0 |
61 | 2H(2)(M) | 7.00×1017 | -1.00 | 0 |
62 | H(2)+C8H11(16) | 1.00×1010 | 0 | 0 |
63 | H(2)+C2H5(6) | 1.08×1013 | 0 | 0 |
64 | C2H3(8)+C8H11(16) | 8.43×1011 | 0 | 0 |
65 | C2H3(8)+C8H10(1) | 5.40×10-4 | 4.55 | 3.50 |
66 | C2H3(8)+C2H5(6) | 4.56×1014 | -0.70 | 0 |
67 | H(2)+C10H17(122) | 1.95×1012 | 0.35 | 0 |
68 | H(2)+C10H17(123) | 1.58×1013 | -0.22 | 0 |
69 | C10H17(122) | 6.76×109 | 0.88 | 38.00 |
70 | C10H17(122) | 2.84×107 | 1.625 | 35.45 |
71 | C10H17(122) | 2.28×10-3 | 3.95 | 11.17 |
72 | C10H17(122) | 5.64×10-2 | 3.28 | 5.91 |
73 | C10H17(122) | 6.76×109 | 0.88 | 38.00 |
74 | C10H17(122)+C10H18(120) | 1.03×10-2 | 4.29 | 7.71 |
75 | C2H5(6)+C10H17(123) | 6.33×1014 | -0.70 | 0 |
76 | npropyl(172)+C17H35(171) | 3.19×1016 | -1.18 | 0 |
77 | CH3(4)+C2H4(7) | 4.18×104 | 2.41 | 5.63 |
78 | CH3(4)+npropyl(172) | 2.30×1013 | -0.32 | 0 |
79 | H(2)+npropyl(172) | 3.62×1012 | 0 | 0 |
80 | allyl(224)+npropyl(172) | 5.80×1012 | 0 | -0.13 |
1 | BP世界能源统计年鉴2022[M].北京: 中国统计出版社, 2022. |
BP World Energy Statistical Yearbook 2022[M]. Beijing: China Statistics Press, 2022. | |
2 | Ore O T, Adebiyi F M. A review on current trends and prospects in the pyrolysis of heavy oils[J]. Journal of Petroleum Exploration and Production, 2021, 11(3): 1521-1530. |
3 | Hadavimoghaddam F, Rozhenko A, Mohammadi M-R, et al. Modeling crude oil pyrolysis process using advanced white-box and black-box machine learning techniques[J]. Scientific Reports, 2023, 13(1): 22649. |
4 | Khelkhal M A, Lapuk S E, Buzyurov A V, et al. Thermal behavior of heavy oil catalytic pyrolysis and aquathermolysis[J]. Catalysts, 2022, 12(4): 449. |
5 | 顾承瑜. 高苛刻度延迟焦化装置掺炼催化裂化油浆的工业实践[J]. 石油炼制与化工, 2022, 53(7): 40-44. |
Gu C Y. Industrial practice of mixing FCC slurry on delayed coking unit with high severity[J]. Petroleum Processing and Petrochemicals, 2022, 53(7): 40-44. | |
6 | Liao G, Shi K, Ye C, et al. Influence of resin on the formation and development of mesophase in fluid catalytic cracking (FCC) slurry oil[J]. Journal of Analytical and Applied Pyrolysis, 2023, 172: 105997. |
7 | Xiong Q A, Zhang Y M, Huang Y J, et al. Fundamental study of the integrated process of heavy oil pyrolysis and coke gasification (Part Ⅰ): Effect of CO and H2 in syngas atmosphere on heavy oil pyrolysis[J]. Fuel, 2022, 324: 124650. |
8 | Nezhad M M, Hami M R. Thermogravimetric analysis and kinetic study of heavy oil pyrolysis[J]. Petroleum Science and Technology, 2016, 34(10): 911-914. |
9 | Shin S, Im S I, Kwon E H, et al. Kinetic study on the nonisothermal pyrolysis of oil sand bitumen and its maltene and asphaltene fractions[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 658-665. |
10 | Huang Y, Gao Y X, Zhou H, et al. Pyrolysis of palm kernel shell with internal recycling of heavy oil[J]. Bioresource Technology, 2019, 272: 77-82. |
11 | Gautam R, Alabbad M, Guevara E R, et al. On the products from the pyrolysis of heavy fuel and vacuum residue oil[J]. Journal of Analytical and Applied Pyrolysis, 2023, 173: 106060. |
12 | 李子为. 劣质重油快速热解特性及动力学研究[D]. 北京: 中国石油大学(北京), 2022. |
Li Z W. Study on fast pyrolysis characteristics and kinetics of inferior heavy oil[D]. Beijing: China University of Petroleum, 2022. | |
13 | Fu J, Wang N, Zhao J, et al. A membrane computing optimization algorithm with multi-subsystems for parameter estimation of heavy oil thermal cracking model[J]. International Journal of Intelligent Robotics and Applications, 2022, 6(1): 139-151. |
14 | Zhu Q, Zhao D, Zhang S, et al. U-model enhanced dynamic control of a heavy oil pyrolysis/cracking furnace[J]. IEEE/CAA Journal of Automatica Sinica, 2018, 5(2): 577-586. |
15 | Tan X C, Liu Q K, Zhu D Q, et al. Pyrolysis of heavy oil in the presence of supercritical water: the reaction kinetics in different phases[J]. AIChE Journal, 2015, 61(3): 857-866. |
16 | Yan L, Zhang X P, Zhang S J. The study of molecular modeling for heavy oil thermal cracking[J]. Chemical Engineering & Technology, 2007, 30(9): 1166-1175. |
17 | Jiang D, Yuan C, Cheng X, et al. Study on the pyrolysis mechanism of unsaturated fatty acid: a combined density functional theory and experimental study[J]. International Journal of Energy Research, 2022, 46(2): 2029-2040. |
18 | 韩乔昆, 范启明, 申海平. 芳烃模型化合物的热转化机理研究进展[J]. 化工进展, 2017, 36(S1): 133-141. |
Han Q K, Fan Q M, Shen H P. Research progress on thermal conversion mechanism of aromatic model compounds[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 133-141. | |
19 | Zhang H Y, Yang C J, Tao Y J, et al. Catalytic cracking of model compounds of bio-oil: characteristics and mechanism research on guaiacol and acetic acid[J]. Fuel Processing Technology, 2022, 238: 107512. |
20 | Oliveira L P, Hudebine D, Guillaume D, et al. A review of kinetic modeling methodologies for complex processes[J]. Oil & Gas Science and Technology-Revue D’IFP Energies Nouvelles, 2016, 71: 45. |
21 | Zhang P, Yee N W, Filip S V, et al. Modeling study of the anti-knock tendency of substituted phenols as additives: an application of the reaction mechanism generator (RMG)[J]. Physical Chemistry Chemical Physics, 2018, 20(16): 10637-10649. |
22 | Vernuccio S, Broadbelt L J. Discerning complex reaction networks using automated generators[J]. AIChE Journal, 2019, 65(8): e16663. |
23 | Gao C W, Allen J W, Green W H, et al. Reaction mechanism generator: automatic construction of chemical kinetic mechanisms[J]. Computer Physics Communications, 2016, 203: 212-225. |
24 | van Geem K M, Reyniers M-F, Marin G B, et al. Automatic reaction network generation using RMG for steam cracking of n-hexane[J]. AIChE Journal, 2006, 52(2): 718-730. |
25 | Petway S V, Ismail H, Green W H, et al. Measurements and automated mechanism generation modeling of OH production in photolytically initiated oxidation of the neopentyl radical[J]. The Journal of Physical Chemistry A, 2007, 111(19): 3891-3900. |
26 | Harper M R, van Geem K M, Pyl S P, et al. Comprehensive reaction mechanism for n-butanol pyrolysis and combustion[J]. Combustion and Flame, 2011, 158(1): 16-41. |
27 | Merchant S S, Zanoelo E F, Speth R L, et al. Combustion and pyrolysis of iso-butanol: experimental and chemical kinetic modeling study[J]. Combustion and Flame, 2013, 160(10): 1907-1929. |
28 | Allen J W, Scheer A M, Gao C W, et al. A coordinated investigation of the combustion chemistry of diisopropyl ketone, a prototype for biofuels produced by endophytic fungi[J]. Combustion and Flame, 2014, 161(3): 711-724. |
29 | 任玉. 分子级石脑油蒸汽裂解反应过程模拟与工艺优化[D]. 杭州: 浙江大学, 2022. |
Ren Y. Simulation and optimization of molecular-level naphtha steam cracking reaction process[D]. Hangzhou: Zhejiang University, 2021. | |
30 | 李颖丽, 甯红波, 朱权, 等. 乙苯裂解机理和超临界压力下的动力学模拟[J]. 高等学校化学学报, 2014, 35(3): 576-581. |
Li Y L, Ning H B, Zhu Q, et al. Kinetics simulation of ethylbenzene pyrolysis under supercritical pressure[J]. Chemical Journal of Chinese Universities, 2014, 35(3): 576-581. |
[1] | Hao XIONG, Xiaoyu LIANG, Chenxi ZHANG, Haolong BAI, Xiaoyu FAN, Fei WEI. Heavy oil to chemicals: multi-stage downer catalytic pyrolysis [J]. CIESC Journal, 2023, 74(1): 86-104. |
[2] | Dong GUAN, Linzhou ZHANG, Suoqi ZHAO, Chunming XU. Dissipative particle dynamics simulation of the stability of heavy oil [J]. CIESC Journal, 2022, 73(10): 4613-4624. |
[3] | CHEN Hao, LIU Xiliang, TAN Xianhong, TIAN Xiaofeng, YANG Shenglai, YANG Ran, ZHANG Chao. Study on the effect of surface area on the thermal behavior of crude oils with different properties [J]. CIESC Journal, 2021, 72(6): 3338-3348. |
[4] | Yingying SUN, Minghui ZHOU, Jia HUANG, Hang JIANG, Jiru YANG, Cheng FAN. Research progress and development tendency of heavy oil in-situ upgrading technologies [J]. CIESC Journal, 2020, 71(9): 4141-4151. |
[5] | Hongzhou TIAN,Gaodong YANG,Guoqiang YANG,Huaxun LUO,Zheng ZHOU,Weimin MENG,Yu CAO,Lei LI,Feng ZHANG,Jian YANG,Zhibing ZHANG. Mass transfer basis of low-pressure hydrogenation for heavy oil in microinterface-intensified slurry-bed reactor [J]. CIESC Journal, 2020, 71(11): 4927-4935. |
[6] | Dongxue YU, Helong HUI, Jingdong HE, Songgeng LI. Study on interaction between plastic with wax (heavy oil) in process of catalytic co-pyrolysis [J]. CIESC Journal, 2019, 70(8): 2971-2980. |
[7] | Xiang BAI, Run GUO, Zhaopeng ZENG, Zhentao CHEN, Linzhou ZHANG, Zhiming XU, Chunming XU, Suoqi ZHAO. Effect of asphaltene contents on hydrogen solubility in heavy oils [J]. CIESC Journal, 2019, 70(10): 4012-4020. |
[8] | JING Jiaqiang, YIN Ran, MA Xiaoliang, SUN Jie, WU Xi. Drag characteristics of air-mixed heavy oil in horizontal pipes [J]. CIESC Journal, 2018, 69(8): 3398-3407. |
[9] | WANG Wei, GAO Qiang, GUI Xia, YUN Zhi. Determination and model prediction of solubilities of CO2 in heavy oil under high pressure [J]. CIESC Journal, 2016, 67(2): 442-447. |
[10] | CHEN Zhentao, XU Chunming. Progress of research on diffusional transport of heavy oil in pores [J]. CIESC Journal, 2016, 67(1): 165-175. |
[11] | JING Jiaqiang, SUN Jie, ZHAO Hongyan, DUAN Nian, ZHOU Yinuo, XU Quanxin. Simulation of drag reduction of aqueous foam on heavy oil flow boundary layer [J]. CIESC Journal, 2014, 65(11): 4301-4308. |
[12] | GU Mengmeng1,TU Wenhui1,GUI Shaoyong1,CAI Weiquan1,LIN Yuanhong1,LI Yujun1,CAO Hong2. Development of environment-friendly weak acid water-based cleaning agent with strong detergency on heavy oil [J]. Chemical Industry and Engineering Progree, 2014, 33(06): 1563-1566. |
[13] | CHEN Aicheng,CHEN ShengLi,SANG Lei,XUE Yang,LOU Yafeng. Advances in intraparticle diffusion of heavy oil [J]. Chemical Industry and Engineering Progree, 2013, 32(12): 2813-2818. |
[14] | LI Yujun1,CAI Weiquan1,SONG Sujuan1,WANG Wen1,CAO Hong2. Development of environment-friendly water-based cleaning agent for heavy oil foulant in kitchen ventilator with high detergency [J]. Chemical Industry and Engineering Progree, 2013, 32(08): 1898-1901. |
[15] | LIU Juan1,3,ZHAO Yapu2,HU Bin1,REN Sili1. Stabilization mechanism of water-in-oil emulsions and progress of demulsification technology of heavy oil [J]. Chemical Industry and Engineering Progree, 2013, 32(04): 891-897. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 106
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 192
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||