CIESC Journal ›› 2024, Vol. 75 ›› Issue (7): 2624-2632.DOI: 10.11949/0438-1157.20240260
• Biochemical engineering and technology • Previous Articles Next Articles
Xuemei NA1(), Yu WANG1, Yaozhu JIANG1, Nan JIA1, Ying WANG1(
), Chun LI1,2
Received:
2024-03-04
Revised:
2024-05-14
Online:
2024-08-09
Published:
2024-07-25
Contact:
Ying WANG
那雪梅1(), 王雨1, 姜尧竹1, 贾男1, 王颖1(
), 李春1,2
通讯作者:
王颖
作者简介:
那雪梅(1999—),女,硕士研究生,naxuemei@bit.edu.cn
基金资助:
CLC Number:
Xuemei NA, Yu WANG, Yaozhu JIANG, Nan JIA, Ying WANG, Chun LI. Expression optimization of heterologous CYP450 enzyme promotes the synthesis of ursolic acid in engineering Saccharomyces cerevisiae[J]. CIESC Journal, 2024, 75(7): 2624-2632.
那雪梅, 王雨, 姜尧竹, 贾男, 王颖, 李春. 异源CYP450酶的表达优化促进工程酿酒酵母合成熊果酸[J]. 化工学报, 2024, 75(7): 2624-2632.
Strain | Host strain | Genotype and [plasmid] | Source |
---|---|---|---|
DH5α | E. coli | F-φ80 lac ZΔM15 Δ(lacZYA-arg F) U169 endA1 recA1 hsdR17(rk-,mk+) supE44λ- thi -1 gyrA96 relA1 phoA | Tsingke |
aAM12 | INVSc1 | MATa/MATα his3∆1 leu2 trp1-289 ura3-52Delta:: PGAL1-MdOSC1N11T/P250H_PGAL10-MdOSC1N11T/P250H_PADH1-DGA1-TDGA1_URA3r DNA::PTDH3-tHMG1_PALA1-ERG20_PGPM1 -ERG9_ PTYS1-ERG1_HIS3 [pESC-Trp-tHMG1-MdOSC1N11I/P250H] | this lab |
XM-1 | aAM12 | HO::LEU2-CL8656-MtCPR | this lab |
XM-2 | aAM12 | X-1::LEU2-CL8656-MtCPR | this lab |
XM-3 | aAM12 | X-2::LEU2-CL8656-MtCPR | this lab |
XM-4 | aAM12 | X-3::LEU2-CL8656-MtCPR | this lab |
XM-5 | aAM12 | XI-2::LEU2-CL8656-MtCPR | this lab |
XM-6 | aAM12 | XI-3::LEU2-CL8656-MtCPR | this lab |
XM-7 | aAM12 | XI-4::LEU2-CL8656-MtCPR | this lab |
XM-8 | aAM12 | XII-2::LEU2-CL8656-MtCPR | this lab |
XM-9 | aAM12 | XII-3::LEU2-CL8656-MtCPR | this lab |
XM-10 | aAM12 | XII-4::LEU2-CL8656-MtCPR | this lab |
XM-11 | XM-1 | X-1::kanMX-CL8656 | this lab |
XM-12 | XM-1 | rDNA::kanMX-CL8656-tHMG1-ERG20-ERG9-ERG1 | this lab |
XM-13 | XM-1 | [pESC-kanMX-CL8656] | this lab |
XM-14 | XM-1 | X-1::kanMX-CL8656-MtCPR | this lab |
XM-15 | XM-14 | X-2:: BleoR-CL8656-MtCPR | this lab |
XM-16 | XM-15 | [pRS415-Hygr-CL8656-MtCPR] | this lab |
XM-17 | XM-15 | [pRS42K-Hygr-CL8656-MtCPR] | this lab |
Table 1 Strains and plasmids used in this study
Strain | Host strain | Genotype and [plasmid] | Source |
---|---|---|---|
DH5α | E. coli | F-φ80 lac ZΔM15 Δ(lacZYA-arg F) U169 endA1 recA1 hsdR17(rk-,mk+) supE44λ- thi -1 gyrA96 relA1 phoA | Tsingke |
aAM12 | INVSc1 | MATa/MATα his3∆1 leu2 trp1-289 ura3-52Delta:: PGAL1-MdOSC1N11T/P250H_PGAL10-MdOSC1N11T/P250H_PADH1-DGA1-TDGA1_URA3r DNA::PTDH3-tHMG1_PALA1-ERG20_PGPM1 -ERG9_ PTYS1-ERG1_HIS3 [pESC-Trp-tHMG1-MdOSC1N11I/P250H] | this lab |
XM-1 | aAM12 | HO::LEU2-CL8656-MtCPR | this lab |
XM-2 | aAM12 | X-1::LEU2-CL8656-MtCPR | this lab |
XM-3 | aAM12 | X-2::LEU2-CL8656-MtCPR | this lab |
XM-4 | aAM12 | X-3::LEU2-CL8656-MtCPR | this lab |
XM-5 | aAM12 | XI-2::LEU2-CL8656-MtCPR | this lab |
XM-6 | aAM12 | XI-3::LEU2-CL8656-MtCPR | this lab |
XM-7 | aAM12 | XI-4::LEU2-CL8656-MtCPR | this lab |
XM-8 | aAM12 | XII-2::LEU2-CL8656-MtCPR | this lab |
XM-9 | aAM12 | XII-3::LEU2-CL8656-MtCPR | this lab |
XM-10 | aAM12 | XII-4::LEU2-CL8656-MtCPR | this lab |
XM-11 | XM-1 | X-1::kanMX-CL8656 | this lab |
XM-12 | XM-1 | rDNA::kanMX-CL8656-tHMG1-ERG20-ERG9-ERG1 | this lab |
XM-13 | XM-1 | [pESC-kanMX-CL8656] | this lab |
XM-14 | XM-1 | X-1::kanMX-CL8656-MtCPR | this lab |
XM-15 | XM-14 | X-2:: BleoR-CL8656-MtCPR | this lab |
XM-16 | XM-15 | [pRS415-Hygr-CL8656-MtCPR] | this lab |
XM-17 | XM-15 | [pRS42K-Hygr-CL8656-MtCPR] | this lab |
C/N比 | 营养成分 | 金属离子 | α-amyrin产量/(mg/L) | UA产量/(mg/L) |
---|---|---|---|---|
7∶1 | 2× | — | 34.63±0.72 | 236.99±3.37 |
K+ | 40.04±3.78 | 266.54±6.50 | ||
Fe2+ | 17.69±2.65 | 167.01±6.81 | ||
3× | — | 17.23±5.24 | 234.14±5.77 | |
K+ | 23.87±2.39 | 266.21±7.27 | ||
Fe2+ | 19.82±5.34 | 167.34±6.55 | ||
4× | — | 9.91±0.06 | 208.32±7.12 | |
K+ | 14.97±0.62 | 239.00±8.57 | ||
Fe2+ | 10.27±1.64 | 180.47±4.46 | ||
9∶1 | 2× | — | 23.13±0.96 | 237.56±8.82 |
K+ | 33.48±0.80 | 225.51±5.74 | ||
Fe2+ | 14.240±0.42 | 190.79±8.02 | ||
3× | — | 15.17±0.20 | 219.37±2.61 | |
K+ | 17.77±0.20 | 163.11±2.56 | ||
Fe2+ | 11.49±2.38 | 150.67±5.07 | ||
4× | — | 6.26±0.61 | 148.59±2.57 | |
K+ | 8.32±0.21 | 144.50±5.99 | ||
Fe2+ | 9.13±3.27 | 113.94±4.04 | ||
11∶1 | 2× | — | 23.58±1.35 | 168.71±5.05 |
K+ | 35.01±2.76 | 163.66±2.26 | ||
Fe2+ | 12.65±2.64 | 147.93±2.32 | ||
3× | — | 11.05±0.86 | 167.73±0.96 | |
K+ | 12.48±1.01 | 142.91±4.78 | ||
Fe2+ | 7.77±1.172 | 106.23±6.00 | ||
4× | — | 7.22±1.36 | 102.50±3.93 | |
K+ | 6.74±0.053 | 99.96±5.74 | ||
Fe2+ | 6.57±0.70 | 78.30±3.30 |
Table 2 Optimization of cultivation conditions for XM-15
C/N比 | 营养成分 | 金属离子 | α-amyrin产量/(mg/L) | UA产量/(mg/L) |
---|---|---|---|---|
7∶1 | 2× | — | 34.63±0.72 | 236.99±3.37 |
K+ | 40.04±3.78 | 266.54±6.50 | ||
Fe2+ | 17.69±2.65 | 167.01±6.81 | ||
3× | — | 17.23±5.24 | 234.14±5.77 | |
K+ | 23.87±2.39 | 266.21±7.27 | ||
Fe2+ | 19.82±5.34 | 167.34±6.55 | ||
4× | — | 9.91±0.06 | 208.32±7.12 | |
K+ | 14.97±0.62 | 239.00±8.57 | ||
Fe2+ | 10.27±1.64 | 180.47±4.46 | ||
9∶1 | 2× | — | 23.13±0.96 | 237.56±8.82 |
K+ | 33.48±0.80 | 225.51±5.74 | ||
Fe2+ | 14.240±0.42 | 190.79±8.02 | ||
3× | — | 15.17±0.20 | 219.37±2.61 | |
K+ | 17.77±0.20 | 163.11±2.56 | ||
Fe2+ | 11.49±2.38 | 150.67±5.07 | ||
4× | — | 6.26±0.61 | 148.59±2.57 | |
K+ | 8.32±0.21 | 144.50±5.99 | ||
Fe2+ | 9.13±3.27 | 113.94±4.04 | ||
11∶1 | 2× | — | 23.58±1.35 | 168.71±5.05 |
K+ | 35.01±2.76 | 163.66±2.26 | ||
Fe2+ | 12.65±2.64 | 147.93±2.32 | ||
3× | — | 11.05±0.86 | 167.73±0.96 | |
K+ | 12.48±1.01 | 142.91±4.78 | ||
Fe2+ | 7.77±1.172 | 106.23±6.00 | ||
4× | — | 7.22±1.36 | 102.50±3.93 | |
K+ | 6.74±0.053 | 99.96±5.74 | ||
Fe2+ | 6.57±0.70 | 78.30±3.30 |
1 | Zhu X X, Liu X N, Liu T, et al. Synthetic biology of plant natural products: from pathway elucidation to engineered biosynthesis in plant cells[J]. Plant Communications, 2021, 2(5): 100229. |
2 | Pemberton T A, Chen M B, Harris G G, et al. Exploring the influence of domain architecture on the catalytic function of diterpene synthases[J]. Biochemistry, 2017, 56(14): 2010-2023. |
3 | Lu C Z, Zhang C B, Zhao F L, et al. Biosynthesis of ursolic acid and oleanolic acid in Saccharomyces cerevisiae [J]. AIChE Journal, 2018, 64(11): 3794-3802. |
4 | Rashid S, Dar B A, Majeed R, et al. Synthesis and biological evaluation of ursolic acid-triazolyl derivatives as potential anti-cancer agents[J]. European Journal of Medicinal Chemistry, 2013, 66: 238-245. |
5 | Saravanan R, Viswanathan P, Pugalendi K V. Protective effect of ursolic acid on ethanol-mediated experimental liver damage in rats[J]. Life Sciences, 2006, 78(7): 713-718. |
6 | Yin R, Li T, Tian J X, et al. Ursolic acid, a potential anticancer compound for breast cancer therapy[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(4): 568-574. |
7 | Balanehru S, Nagarajan B. Intervention of adriamycin induced free-radical damage[J]. Biochemistry International, 1992, 28(4): 735-744. |
8 | Xiang L P, Chi T, Tang Q, et al. A pentacyclic triterpene natural product, ursolic acid and its prodrug US597 inhibit targets within cell adhesion pathway and prevent cancer metastasis[J]. Oncotarget, 2015, 6(11): 9295-9312. |
9 | Charpe T W, Rathod V K. Separation of glycyrrhizic acid from licorice root extract using macroporous resin[J]. Food and Bioproducts Processing, 2015, 93: 51-57. |
10 | Cravens A, Payne J, Smolke C D. Synthetic biology strategies for microbial biosynthesis of plant natural products[J]. Nature Communications, 2019, 10(1): 2142. |
11 | Guo H, Wang H Y, Huo Y X. Engineering critical enzymes and pathways for improved triterpenoid biosynthesis in yeast[J]. ACS Synthetic Biology, 2020, 9(9): 2214-2227. |
12 | Ikeda Y, Murakami A, Ohigashi H. Ursolic acid: an anti- and pro-inflammatory triterpenoid[J]. Molecular Nutrition & Food Research, 2008, 52(1): 26-42. |
13 | Kong S J, Yu W, Gao N, et al. Expanding the neutral sites for integrated gene expression in Saccharomyces cerevisiae [J]. FEMS Microbiology Letters, 2022, 369(1): fnac081. |
14 | Velculescu V E, Zhang L, Zhou W, et al. Characterization of the yeast transcriptome[J]. Cell, 1997, 88(2): 243-251. |
15 | 张文政, 唐继军, 李炳志, 等. 酿酒酵母基因组位置效应对外源基因表达的影响[J]. 生物工程学报, 2016, 32(7): 901-911. |
Zhang W Z, Tang J J, Li B Z, et al. Effect of integration loci of genome on heterologous gene expression in Saccharomyces cerevisiae [J]. Chinese Journal of Biotechnology, 2016, 32(7): 901-911. | |
16 | Yamane S, Yamaoka M, Yamamoto M, et al. Region specificity of chromosome Ⅲ on gene expression in the yeast Saccharomyces cerevisiae [J]. The Journal of General and Applied Microbiology, 1998, 44(4): 275-281. |
17 | Bai F D, Siewers V, Huang L, et al. Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae [J]. Yeast, 2009, 26(10): 545-551. |
18 | Thompson A, Gasson M J. Location effects of a reporter gene on expression levels and on native protein synthesis in Lactococcus lactis and Saccharomyces cerevisiae [J]. Applied and Environmental Microbiology, 2001, 67(8): 3434-3439. |
19 | Wu X L, Li B Z, Zhang W Z, et al. Genome-wide landscape of position effects on heterogeneous gene expression in Saccharomyces cerevisiae [J]. Biotechnology for Biofuels, 2017, 10(1): 189. |
20 | Urlacher V B, Girhard M. Cytochrome P450 monooxygenases in biotechnology and synthetic biology[J]. Trends in Biotechnology, 2019, 37(8): 882-897. |
21 | Cha Y P, Li W, Wu T, et al. Probing the synergistic ratio of P450/CPR to improve (+)-nootkatone production in Saccharomyces cerevisiae [J]. Journal of Agricultural and Food Chemistry, 2022, 70(3): 815-825. |
22 | Xu L P, Wang D, Chen J, et al. Metabolic engineering of Saccharomyces cerevisiae for gram-scale diosgenin production[J]. Metabolic Engineering, 2022, 70: 115-128. |
23 | Sun M C, Xin Q, Hou K X, et al. Production of 11-oxo-β-amyrin in Saccharomyces cerevisiae at high efficiency by fine-tuning the expression ratio of CYP450: CPR[J]. Journal of Agricultural and Food Chemistry, 2023, 71(8): 3766-3776. |
24 | 陈明凯, 叶丽丹, 于洪巍. 代谢改造酿酒酵母合成萜类化合物的研究进展[J]. 生物工程学报, 2021, 37(6): 2085-2104. |
Chen M K, Ye L D, Yu H W. Advances in metabolic engineering of Saccharomyces cerevisiae for terpenoids biosynthesis[J]. Chinese Journal of Biotechnology, 2021, 37(6): 2085-2104. | |
25 | Wang S, Meng D, Feng M L, et al. Efficient plant triterpenoids synthesis in Saccharomyces cerevisiae: from mechanisms to engineering strategies[J]. ACS Synthetic Biology, 2024, 13(4): 1059-1076. |
26 | Carsanba E, Pintado M, Oliveira C. Fermentation strategies for production of pharmaceutical terpenoids in engineered yeast[J]. Pharmaceuticals, 2021, 14(4): 295. |
27 | Moses T, Pollier J, Almagro L, et al. Combinatorial biosynthesis of sapogenins and saponins in Saccharomyces cerevisiae using a C-16α hydroxylase from Bupleurum falcatum [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(4): 1634-1639. |
28 | Jin K, Shi X, Liu J H, et al. Combinatorial metabolic engineering enables the efficient production of ursolic acid and oleanolic acid in Saccharomyces cerevisiae [J]. Bioresource Technology, 2023, 374: 128819. |
29 | Jia N, Li J Z, Zang G W, et al. Engineering Saccharomyces cerevisiae for high-efficient production of ursolic acid via cofactor engineering and acetyl-CoA optimization[J]. Biochemical Engineering Journal, 2024, 203: 109189. |
30 | 江丽红, 董昌, 黄磊, 等. 酿酒酵母代谢工程技术[J]. 生物工程学报, 2021, 37(5): 1578-1602. |
Jiang L H, Dong C, Huang L, et al. Metabolic engineering tools for Saccharomyces cerevisiae [J]. Chinese Journal of Biotechnology, 2021, 37(5): 1578-1602. |
[1] | Tao SUN, Meili SUN, Ran LU, Yizi YU, Kaifeng WANG, Xiaojun JI. Synthetic biology of yeasts drives green biomanufacturing of succinic acid [J]. CIESC Journal, 2024, 75(4): 1382-1393. |
[2] | Xuejin GAO, Yuzhuo YAO, Huayun HAN, Yongsheng QI. Fault monitoring of fermentation process based on attention dynamic convolutional autoencoder [J]. CIESC Journal, 2023, 74(6): 2503-2521. |
[3] | Zhe WANG, Jianlin WANG, Ji LI, Xinjie ZHOU, Enguang SUI. Multimode batch process soft sensor method based on WSDPC-RVR [J]. CIESC Journal, 2023, 74(11): 4656-4669. |
[4] | Wei HE, Yongna CAO, Hongru SHANG, Yinxue LI, Chao GUO, Yanling YU. Optimum design and performance analysis of waste heat recovery system for biomass fermentation [J]. CIESC Journal, 2023, 74(10): 4302-4310. |
[5] | Xin LIU, Jun GE, Chun LI. Light-driven microbial hybrid systems improve level of biomanufacturing [J]. CIESC Journal, 2023, 74(1): 330-341. |
[6] | Xue LIU, Lijuan ZHANG, Guangrong ZHAO. Commensalistic Escherichia coli coculture for biosynthesis of daidzein [J]. CIESC Journal, 2022, 73(9): 4015-4024. |
[7] | Yuelin WANG, Wei CHAO, Xiaocheng LAN, Zhipeng MO, Shuhuan TONG, Tiefeng WANG. Review of ethanol production via biological syngas fermentation [J]. CIESC Journal, 2022, 73(8): 3448-3460. |
[8] | Xuejin GAO, Zihe HE, Huihui GAO, Yongsheng QI. Quality-related fault monitoring of multi-phase fermentation process based on joint canonical variable matrix [J]. CIESC Journal, 2022, 73(3): 1300-1314. |
[9] | Yi SUN, Teng ZHANG, Bo LYU, Chun LI. Improvement for fine regulation of microbial cell factory by intracellular biosensors [J]. CIESC Journal, 2022, 73(2): 521-534. |
[10] | Jingnan WANG, Jian PANG, Lei QIN, Chao GUO, Bo LYU, Chun LI, Chao WANG. Breeding and modification strategies of butenyl-spinosyn high-yield strains [J]. CIESC Journal, 2022, 73(2): 566-576. |
[11] | Haibo LIU, Nan WANG, Hongzhou LIU, Tiezhu CHEN, Jianchang LI. Effects of voltage perturbation on the activities of microorganisms and key enzymes in EAD metabolic flux [J]. CIESC Journal, 2022, 73(10): 4603-4612. |
[12] | Xinhui WANG, Ying WANG, Mingdong YAO, Wenhai XIAO. Research progress of vitamin A biosynthesis [J]. CIESC Journal, 2022, 73(10): 4311-4323. |
[13] | Wulin ZHOU, Huifang GAO, Yuling WU, Xian ZHANG, Meijuan XU, Taowei YANG, Minglong SHAO, Zhiming RAO. Engineering of Saccharomyces cerevisiae for biosynthesis of campesterol [J]. CIESC Journal, 2021, 72(8): 4314-4324. |
[14] | YANG Ruixiong, ZHENG Xin, LU Tao, ZHAO Yuze, YANG Qinghua, LU Yinghua, HE Ning, LING Xueping. Effects of substitution of ER domains on the synthesis of eicosapentaenoic acid in Schizochytrium limacinum SR21 [J]. CIESC Journal, 2021, 72(7): 3768-3779. |
[15] | MAO Jinzhu, XIAO Shuling, YANG Zhichun, WANG Xiaoyu, ZHANG Shi, CHEN Junhong, XIE Jisheng, CHEN Fude, HUANG Zinuo, FENG Tianyu, ZHANG Aihui, FANG Baishan. Application of synthetic biology in pesticides residues detection [J]. CIESC Journal, 2021, 72(5): 2413-2425. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 247
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 198
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||