CIESC Journal ›› 2024, Vol. 75 ›› Issue (10): 3742-3751.DOI: 10.11949/0438-1157.20240349
• Energy and environmental engineering • Previous Articles Next Articles
Mingcheng SHAO1(), Yugui PAN2, Zengli WANG1(
), Qiang ZHAO1
Received:
2024-03-29
Revised:
2024-07-03
Online:
2024-11-04
Published:
2024-10-25
Contact:
Zengli WANG
通讯作者:
王增丽
作者简介:
邵明成(1999—),男,硕士研究生,shaomc371518@163.com
基金资助:
CLC Number:
Mingcheng SHAO, Yugui PAN, Zengli WANG, Qiang ZHAO. Study on the thermal properties of CO2/CH4 mixtures in the theoretical trans-critical pressurization process[J]. CIESC Journal, 2024, 75(10): 3742-3751.
邵明成, 潘玉贵, 王增丽, 赵强. CO2/CH4混合物理论跨临界增压过程的热力性能研究[J]. 化工学报, 2024, 75(10): 3742-3751.
11 | 朱宏跃, 银建中. 超临界CO2技术在能源领域的若干应用[J]. 应用科技, 2019, 46(6): 85-91. |
Zhu H Y, Yin J Z. Some applications of supercritical CO2 technology in energy field[J]. Applied Science and Technology, 2019, 46(6): 85-91. | |
12 | Hosseinpour J, Messele M, Engeda A. Design and development of a stable supercritical CO2 centrifugal compressor[J]. Thermal Science and Engineering Progress, 2024, 47: 102273. |
13 | 孙恩慧, 杨振宇, 廖凯龙, 等. 超临界二氧化碳离心压缩机设计及性能预测[J]. 热力发电, 2023, 52(6): 127-134, 156. |
Sun E H, Yang Z Y, Liao K L, et al. Design and performance prediction of supercritical carbon dioxide centrifugal compressor[J]. Thermal Power Generation, 2023, 52(6): 127-134, 156. | |
14 | 滕庚, 沈昕, 欧阳华, 等. 超临界二氧化碳离心压缩机性能预测模型研究[J]. 热力发电, 2020, 49(10): 173-179. |
Teng G, Shen X, Ouyang H, et al. Research on performance prediction model of supercritical carbon dioxide centrifugal compressor[J]. Thermal Power Generation, 2020, 49(10): 173-179. | |
15 | Kim S G, Lee J, Ahn Y, et al. CFD investigation of a centrifugal compressor derived from pump technology for supercritical carbon dioxide as a working fluid[J]. The Journal of Supercritical Fluids, 2014, 86: 160-171. |
16 | 张磊, 董铮, 杨振宇, 等. 超临界二氧化碳循环离心压缩机性能与流场分析[J]. 工程热物理学报, 2023, 44(5): 1209-1218. |
Zhang L, Dong Z, Yang Z Y, et al. Performance and flow field analysis of supercritical carbon dioxide circulation centrifugal compressor[J]. Journal of Engineering Thermophysics, 2023, 44(5): 1209-1218. | |
17 | 董铮. 超临界二氧化碳离心压缩机流场特性的数值模拟研究[D]. 北京: 华北电力大学, 2022. |
Dong Z. Numerical simulation of flow field characteristics of supercritical carbon dioxide centrifugal compressor[D]. Beijing: North China Electric Power University, 2022. | |
18 | 王枭, 饶杰, 朱晓农, 等. 几何参数对跨临界二氧化碳离心压缩机叶轮冷凝现象的影响研究[J]. 风机技术, 2020, 62(6): 18-22. |
Wang X, Rao J, Zhu X N, et al. The influence of geometrical parameters on the condensation phenomenon of the trans-critical carbon dioxide centrifugal compressor impeller[J]. Chinese Journal of Turbomachinery, 2020, 62(6): 18-22. | |
19 | 徐剑. 不同自循环机匣处理结构对超临界二氧化碳离心压缩机的性能影响研究[D]. 天津: 天津理工大学, 2023. |
Xu J. Study of the effect of different self-circulating casing treatment structures on the performance of supercritical carbon dioxide centrifugal compressor[D]. Tianjin: Tianjin University of Technology, 2023. | |
20 | 赵富龙, 田游游, 田瑞峰, 等. 几何结构对S-CO2离心压缩机热力学性能影响分析[J]. 哈尔滨工程大学学报, 2023, 44(12): 2112-2118. |
Zhao F L, Tian Y Y, Tian R F, et al. Effect of geometric structure on the thermodynamic performance of S-CO2 centrifugal compressor[J]. Journal of Harbin Engineering University, 2023, 44(12): 2112-2118. | |
21 | 童志庭, 尚鹏旭, 鞠鹏飞, 等. 自循环处理机匣对S-CO2离心压缩机性能的影响[J]. 天津理工大学学报, 2024, 40(2): 34-40. |
Tong Z T, Shang P X, Ju P F, et al. Performance influence of self-circulation casingtreatmenton S-CO2 centrifugal compressor[J]. Journal of Tianjin University of Technology, 2024, 40(2): 34-40. | |
22 | 裴瑾泽, 王绍成, 赵钊, 等. 进口导叶对S-CO2离心压缩机内部流动及性能的影响研究[J]. 中国电机工程学报. doi: 10.13334/j.0258-8013.pcsee.231380 . |
Pei J Z, Wang S C, Zhao Z, et al. Effect of inlet guide vane on internal flow and performance of S-CO2 centrifugal compressor[J]. Proceedings of the CSEE, doi:10.13334/j.0258-8013.pcsee.231380 . | |
23 | 张伟益, 高秀峰, 李云, 等. 超临界CO2注气压缩机的设计[J]. 压缩机技术, 2023(1): 1-5. |
Zhang W Y, Gao X F, Li Y, et al. Design of super critical CO2 gas injection compressor[J]. Compressor Technology, 2023(1): 1-5. | |
24 | Wang T, Wang J, Guo Y, et al. The study on mass transport process in the cylinder of CO2 compressor based on p-V diagram[J]. Applied Thermal Engineering, 2020, 174: 115314. |
25 | 富畅. 超临界二氧化碳的热物性模型[D]. 贵阳: 贵州大学, 2006. |
1 | 贾津耀, 衣华磊, 刘维滨, 等. 海上油田超临界态高含CO2伴生气回注压缩机选型设计研究[J]. 石油科技论坛, 2023, 42(2): 105-109. |
Jia J Y, Yi H L, Liu W B, et al. Research on design of compressors for re-injection of supercritical high-CO2 associated gas in offshore oilfields[J]. Petroleum Science and Technology Forum, 2023, 42(2): 105-109. | |
2 | Cheng Q G, Li Z X, Zhu G S, et al. Research and application of CO2 flooding enhanced oil recovery in low permeability oilfield[J]. Open Journal of Geology, 2017, 7(9): 1435-1440. |
3 | Chen Z, Su Y L, Li L, et al. Characteristics and mechanisms of supercritical CO2 flooding under different factors in low-permeability reservoirs[J]. Petroleum Science, 2022, 19(3): 1174-1184. |
4 | 徐锐, 沈瑞, 周体尧, 等. 致密油藏大注入量CO2驱油机理研究[J]. 天然气与石油, 2023, 41(4): 55-66. |
Xu R, Shen R, Zhou T Y, et al. Research on CO2 flooding mechanism in tight oil reservoirs[J]. Natural Gas and Oil, 2023, 41(4): 55-66. | |
5 | 兰晶晶, 唐帆, 谢代培, 等. 致密油藏CO2驱油提高采收率实验研究[J]. 当代化工, 2023, 52(4): 997-1001. |
Lan J J, Tang F, Xie D P, et al. Study on enhanced oil recovery by CO2 flooding in tight oil reservoirs[J]. Contemporary Chemical Industry, 2023, 52(4): 997-1001. | |
6 | 潘继平. 基于管道运输的中国二氧化碳驱油提高采收率发展现状与前景展望[J]. 国际石油经济, 2023, 31(3): 1-9. |
Pan J P. Status quo of China's CCUS-EOR with CO2 pipeline transportation and its prospects[J]. International Petroleum Economics, 2023, 31(3): 1-9. | |
7 | 李三山, 樊超, 李璐, 等. 致密油藏CO2驱油数值模拟研究[J]. 石油化工应用, 2023, 42(2): 85-89. |
Li S S, Fan C, Li L, et al. Numerical simulation research on CO2 flooding in tight oil reservoirs[J]. Petrochemical Industry Application, 2023, 42(2): 85-89. | |
8 | 姚明伟. “双碳”目标下CCUS技术与CO2驱油技术间关联和展望[J]. 云南化工, 2023, 50(1): 9-11. |
Yao M W. Prospects of carbon capture, utilization and storage technology and CO2 flooding enhanced oil recovery technology under the goal of “double carbon”[J]. Yunnan Chemical Technology, 2023, 50(1): 9-11. | |
9 | 李三山. 致密油藏CO2驱油和埋存可行性研究[J]. 当代化工研究, 2022(24): 34-36. |
25 | Fu C. The thermal properties model of supercritical carbon dioxide[D]. Guiyang: Guizhou University, 2006. |
26 | 李裴晨, 张慢来, 黄新宇, 等. 超临界二氧化碳热物性参数计算研究[J]. 内江科技, 2020, 41(1): 79-80, 56. |
Li P C, Zhang M L, Huang X Y, et al. Study on calculation of thermophysical parameters of supercritical carbon dioxide[J]. Neijiang Science and Technology, 2020, 41(1): 79-80, 56. | |
27 | 常发旺. 超临界二氧化碳物性计算方法研究[J]. 石化技术, 2016, 23(8): 248. |
Chang F W. Study on calculation method of physical properties of supercritical carbon dioxide[J]. Petrochemical Industry Technology, 2016, 23(8): 248. | |
28 | 彭兆睿, 郑秋云, 张信荣. 大工况范围内超临界区二氧化碳物性快速计算方法研究[J]. 节能与环保, 2023(1): 39-41. |
Peng Z R, Zheng Q Y, Zhang X R. Study on the fast calculation method of thermophysical properties of carbon dioxide in supercritical state within large working ranges[J]. Energy Conservation & Environmental Protection, 2023(1): 39-41. | |
29 | 闫国民. 二氧化碳在近临界点处的物性变化规律研究[D]. 东营: 中国石油大学(华东), 2017. |
Yan G M. Research on change rule of carbon dioxide physical properties near the critical point[D]. Dongying: China University of Petroleum, 2017. | |
30 | 李向良. 二氧化碳驱油藏产出气回注的可行性及其对驱油效果的影响[J]. 油气地质与采收率, 2016, 23(3): 72-76. |
Li X L. Feasibility of produced gas reinjection during CO2 flooding and its influence on displacement efficiency[J]. Petroleum Geology and Recovery Efficiency, 2016, 23(3): 72-76. | |
9 | Li S S. Feasibility study of CO2 flooding and storage in tight reservoirs[J]. Modern Chemical Research, 2022(24): 34-36. |
10 | 刘洋, 聂伟, 孙骥, 等. 注气驱油技术的研究与应用[J]. 西部探矿工程, 2022, 34(11): 66-68. |
Liu Y, Nie W, Sun J, et al. Research and application of gas injection oil displacement technology[J]. West-China Exploration Engineering, 2022, 34(11): 66-68. |
[1] | Gang ZENG, Lin CHEN, Dong YANG, Haizhuan YUAN, Yanping HUANG. Visualization of local boundary thermal flow field of supercritical CO2 inside a rectangular channel [J]. CIESC Journal, 2024, 75(8): 2831-2839. |
[2] | Ziyang LI, Nan ZHENG, Jiabin FANG, Jinjia WEI. Performance analysis and multi-objective optimization of recompression S-CO2 Brayton cycle [J]. CIESC Journal, 2024, 75(6): 2143-2156. |
[3] | Dong HAN, Ningning GAO, Xinde TANG, Shenggao GONG, Liangshu XIA. Model development for simulating bubble breakup in gas-liquid bubbly flows with the Eulerian-Lagrangian approach [J]. CIESC Journal, 2024, 75(2): 553-565. |
[4] | Xueyun WANG, Xiaobing YU, Wanwang PENG, Yansong SHEN. Numerical study on combustion zone behaviors of a slagging gasifier [J]. CIESC Journal, 2024, 75(2): 659-674. |
[5] | Zhi ZHU, Hengjie XU, Wei CHEN, Wenyuan MAO, Qiangguo DENG, Xuejian SUN. Study on critical chocked characteristics of supercritical carbon dioxide spiral groove dry gas seal under thermal-fluid coupling lubrication [J]. CIESC Journal, 2024, 75(2): 604-615. |
[6] | Aoxiang JIANG, Yuan CHEN, Yuntang LI, Jinbo JIANG, Xudong PENG, Cong ZHANG, Bingqing WANG. Influence of micro-gap high-speed fluid effects on compliant foil cylindrical gas film seal performance [J]. CIESC Journal, 2024, 75(10): 3691-3704. |
[7] | Di WANG, Yinghan CUI, Lingfang SUN, Yunlong ZHOU. Thermodynamic analysis of supercritical carbon dioxide mixed working fluid energy storage system [J]. CIESC Journal, 2024, 75(10): 3414-3423. |
[8] | Zexin ZHANG, Weizhong ZHENG, Yisheng XU, Dongdong HU, Xinyu ZHUO, Yuan ZONG, Weizhen SUN, Ling ZHAO. Research progress of wafer cleaning and selective etching in supercritical carbon dioxide media [J]. CIESC Journal, 2024, 75(1): 110-119. |
[9] | Wen WEN, Huiyan WANG, Jinghong ZHOU, Yueqiang CAO, Xinggui ZHOU. Simulation study on the impact of graphite anode particles on lithium-ion battery capacity fading and SEI film growth [J]. CIESC Journal, 2024, 75(1): 366-376. |
[10] | Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide [J]. CIESC Journal, 2023, 74(S1): 183-190. |
[11] | Rui HONG, Baoqiang YUAN, Wenjing DU. Analysis on mechanism of heat transfer deterioration of supercritical carbon dioxide in vertical upward tube [J]. CIESC Journal, 2023, 74(8): 3309-3319. |
[12] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[13] | Zhaoguang CHEN, Yuxiang JIA, Meng WANG. Modeling neutralization dialysis desalination driven by low concentration waste acid and its validation [J]. CIESC Journal, 2023, 74(6): 2486-2494. |
[14] | Laiming LUO, Jin ZHANG, Zhibin GUO, Haining WANG, Shanfu LU, Yan XIANG. Simulation and experiment of high temperature polymer electrolyte membrane fuel cells stack in the 1—5 kW range [J]. CIESC Journal, 2023, 74(4): 1724-1734. |
[15] | Bingguo ZHU, Jixiang HE, Jinliang XU, Bin PENG. Heat transfer characteristics of supercritical pressure CO2 in diverging/converging tube under cooling conditions [J]. CIESC Journal, 2023, 74(3): 1062-1072. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 64
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 99
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||