CIESC Journal ›› 2024, Vol. 75 ›› Issue (10): 3414-3423.DOI: 10.11949/0438-1157.20240521
• Thermodynamics • Previous Articles Next Articles
Di WANG1(), Yinghan CUI1(
), Lingfang SUN1, Yunlong ZHOU2
Received:
2024-05-13
Revised:
2024-06-26
Online:
2024-11-04
Published:
2024-10-25
Contact:
Yinghan CUI
通讯作者:
崔颖晗
作者简介:
王迪(1989—),男,博士,副教授,wd1989125@163.com
基金资助:
CLC Number:
Di WANG, Yinghan CUI, Lingfang SUN, Yunlong ZHOU. Thermodynamic analysis of supercritical carbon dioxide mixed working fluid energy storage system[J]. CIESC Journal, 2024, 75(10): 3414-3423.
王迪, 崔颖晗, 孙灵芳, 周云龙. 超临界二氧化碳混合工质储能系统热力学分析[J]. 化工学报, 2024, 75(10): 3414-3423.
参数 | 仿真值 | 参考值 | 相对误差/% |
---|---|---|---|
主压缩机温度/K | 322.8 | 324 | 0.37 |
主压缩机压力/kPa | 13842 | 13840 | 0.01 |
再压缩机温度/K | 391.9 | 391 | 0.23 |
再压缩机压力/kPa | 13968 | 13731 | 1.73 |
透平温度/K | 747.8 | 750 | 0.29 |
透平压力/kPa | 7889 | 7890 | 0.01 |
低温回热器热端温度/K | 337.2 | 335 | 0.66 |
低温回热器热端压力/kPa | 7820 | 7760 | 0.77 |
低温回热器冷端温度/K | 391.3 | 389 | 0.59 |
低温回热器冷端压力/kPa | 13840 | 13730 | 0.8 |
高温回热器热端温度/K | 415 | 418 | 0.72 |
高温回热器热端压力/kPa | 7890 | 7820 | 0.9 |
高温回热器冷端温度/K | 695.7 | 698 | 0.33 |
高温回热器冷端压力/kPa | 13730 | 13610 | 0.88 |
Table 1 Verification of the model
参数 | 仿真值 | 参考值 | 相对误差/% |
---|---|---|---|
主压缩机温度/K | 322.8 | 324 | 0.37 |
主压缩机压力/kPa | 13842 | 13840 | 0.01 |
再压缩机温度/K | 391.9 | 391 | 0.23 |
再压缩机压力/kPa | 13968 | 13731 | 1.73 |
透平温度/K | 747.8 | 750 | 0.29 |
透平压力/kPa | 7889 | 7890 | 0.01 |
低温回热器热端温度/K | 337.2 | 335 | 0.66 |
低温回热器热端压力/kPa | 7820 | 7760 | 0.77 |
低温回热器冷端温度/K | 391.3 | 389 | 0.59 |
低温回热器冷端压力/kPa | 13840 | 13730 | 0.8 |
高温回热器热端温度/K | 415 | 418 | 0.72 |
高温回热器热端压力/kPa | 7890 | 7820 | 0.9 |
高温回热器冷端温度/K | 695.7 | 698 | 0.33 |
高温回热器冷端压力/kPa | 13730 | 13610 | 0.88 |
参数 | 数值 |
---|---|
储能时间/s | 660 |
释能时间/s | 480 |
储能阶段混合工质流量/(kg/s) | 70 |
释能阶段混合工质流量/(kg/s) | 80 |
压缩机等熵效率/% | 89 |
透平等熵效率/% | 90 |
储冷罐内导热油体积/m3 | 55 |
储热罐内导热油体积/m3 | 0 |
环境温度/K | 298.15 |
热源温度/K | 838.15 |
Table 2 System design parameter
参数 | 数值 |
---|---|
储能时间/s | 660 |
释能时间/s | 480 |
储能阶段混合工质流量/(kg/s) | 70 |
释能阶段混合工质流量/(kg/s) | 80 |
压缩机等熵效率/% | 89 |
透平等熵效率/% | 90 |
储冷罐内导热油体积/m3 | 55 |
储热罐内导热油体积/m3 | 0 |
环境温度/K | 298.15 |
热源温度/K | 838.15 |
Fig. 8 The energy storage density with the mass fraction of the mixed working medium is 6% and 10% under the pressure drop change of the throttle valve
1 | 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245-6259. |
Li H, Liu D, Yao D Y. Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18): 6245-6259. | |
2 | Zhang Y, Shen X J, Tian Z, et al. A step towards dynamic: an investigation on a carbon dioxide binary mixtures based compressed gas energy storage system using energy and exergy analysis[J]. Energy, 2023, 282: 128415. |
3 | Zhang T H, Gao J M, Zhang Y, et al. Thermodynamic analysis of a novel adsorption-type trans-critical compressed carbon dioxide energy storage system[J]. Energy Conversion and Management, 2022, 270: 116268. |
4 | 李佳佳, 李兴朔, 魏凡超, 等. 耦合火电机组的新型压缩空气储能系统技术经济性评估研究[J]. 中国电机工程学报, 2023, 43(23): 9171-9183. |
Li J J, Li X S, Wei F C, et al. Research on techno-economic evaluation of new type compressed air energy storage coupled with thermal power unit[J]. Proceedings of the CSEE, 2023, 43(23): 9171-9183. | |
5 | Shi X P, He Q, Liu Y X, et al. Thermodynamic and techno-economic analysis of a novel compressed air energy storage system coupled with coal-fired power unit[J]. Energy, 2024, 292: 130591. |
6 | Li F Y, Yu Y P, Shu Y, et al. Study on characteristics of photovoltaic and photothermal coupling compressed air energy storage system[J]. Process Safety and Environmental Protection, 2023, 178: 147-155. |
7 | Chen H, Wang H R, Li R X, et al. Thermo-dynamic and economic analysis of a novel pumped hydro-compressed air energy storage system combined with compressed air energy storage system as a spray system[J]. Energy, 2023, 280: 128134. |
8 | 李玉平, 徐玉杰, 李斌, 等. 跨临界二氧化碳储能系统研究[J]. 中国电机工程学报, 2018, 38(21): 6367-6374, 6499. |
Li Y P, Xu Y J, Li B, et al. Research on transcritical carbon dioxide energy storage system[J]. Proceedings of the CSEE, 2018, 38(21): 6367-6374, 6499. | |
9 | 李玉平. 压缩二氧化碳储能系统的热力学性能分析[D]. 北京: 华北电力大学, 2018. |
Li Y P. Thermal performance analysis of the compressed carbon dioxide energy storage system[D]. Beijing: North China Electric Power University, 2018. | |
10 | 高超, 段立强, 高统彤, 等. 集成塔式太阳能的新型超临界压缩二氧化碳储能系统性能分析[J]. 中国电机工程学报, 2024, 44(10): 3949-3962. |
Gao C, Duan L Q, Gao T T, et al. Performance analysis of novel supercritical compressed carbon dioxide energy storage systems integrated with tower solar energy[J]. Proceedings of the CSEE, 2024, 44(10): 3949-3962. | |
11 | 郝银萍, 何青, 刘文毅. 多级回热式跨临界压缩二氧化碳储能系统热力性能分析[J]. 热能动力工程, 2020, 35(4): 16-23. |
Hao Y P, He Q, Liu W Y. Thermal performance analysis of multi-stage regenerative transcritical compressed carbon dioxide energy storage system[J]. Journal of Engineering for Thermal Energy and Power, 2020, 35(4): 16-23. | |
12 | 章颢缤, 周宇, 刘琰, 等. 超临界二氧化碳-高温热泵联合储能发电系统设计及分析[J]. 热力发电, 2024, 53(4): 53-62. |
Zhang H B, Zhou Y, Liu Y, et al. Design and analysis of a supercritical carbon dioxide and high-temperature heat pump combined energy storage and power generation system[J]. Thermal Power Generation, 2024, 53(4): 53-62. | |
13 | 刘辉. 超临界压缩二氧化碳储能系统热力学特性与热经济性研究[D]. 北京: 华北电力大学, 2017. |
Liu H. Research on thermodynamic and thermoeconomic properties of super-critical compressed carbon dioxide energy storage[D]. Beijing: North China Electric Power University, 2017. | |
14 | 吴子睿, 孙瑞, 石凌峰, 等. CO2混合工质的气液相平衡的混合规则对比与预测研究[J]. 化工学报, 2022, 73(4): 1483-1492. |
Wu Z R, Sun R, Shi L F, et al. A comparative and predictive study of the mixing rules for the vapor-liquid equilibria of CO2-based mixtures[J]. CIESC Journal, 2022, 73(4): 1483-1492. | |
15 | Niu X J, Ma N, Bu Z K, et al. Thermodynamic analysis of supercritical Brayton cycles using CO2-based binary mixtures for solar power tower system application[J]. Energy, 2022, 254: 124286. |
16 | 孙铭泽, 马宁, 李浩然, 等. 中低温超临界CO2及其混合工质布雷顿循环热力学分析[J]. 化工学报, 2022, 73(3): 1379-1388. |
Sun M Z, Ma N, Li H R, et al. Thermodynamic analysis of Brayton cycle of medium and low temperature supercritical CO2 and its mixed working medium[J]. CIESC Journal, 2022, 73(3): 1379-1388. | |
17 | 刘旭, 杨绪青, 刘展. 一种新型的基于二氧化碳混合物的液体储能系统[J]. 储能科学与技术, 2021, 10(5): 1806-1814. |
Liu X, Yang X Q, Liu Z. A novel liquid energy storage system based on a carbon dioxide mixture[J]. Energy Storage Science and Technology, 2021, 10(5): 1806-1814. | |
18 | Tang B, Sun L, Xie Y H. Design and performance evaluation of an energy storage system using CO2-based binary mixtures for thermal power plant under dry conditions[J]. Energy Conversion and Management, 2022, 268: 116043. |
19 | Yan X W, Zhao R J, Liu Z. Performance of a CO2-mixture cycled energy storage system: thermodynamic and economic analysis[J]. Applied Thermal Engineering, 2023, 226: 120280. |
20 | He Q, Liu H, Hao Y P, et al. Thermodynamic analysis of a novel supercritical compressed carbon dioxide energy storage system through advanced exergy analysis[J]. Renewable Energy, 2018, 127: 835-849. |
21 | 郭嘉琪, 王坤, 朱含慧, 等. 超临界CO2及其混合工质布雷顿循环热力学分析[J]. 工程热物理学报, 2017, 38(4): 695-702. |
Guo J Q, Wang K, Zhu H H, et al. Thermodynamic analysis of Brayton cycles using supercritical carbon dioxide and its mixture as working fluid[J]. Journal of Engineering Thermophysics, 2017, 38(4): 695-702. | |
22 | 王瑞, 王轩, 蔡金文, 等. CO2混合工质动力循环系统的动态特性对比[J]. 工程热物理学报, 2020, 41(11): 2651-2657. |
Wang R, Wang X, Cai J W, et al. Comparison of dynamic performance of CO2 mixture transcritical power cycle systems[J]. Journal of Engineering Thermophysics, 2020, 41(11): 2651-2657. | |
23 | 王迪, 司龙, 谢欣言, 等. 耦合超临界二氧化碳储能循环燃煤机组动态特性仿真[J]. 中国电机工程学报, 2023, 43(6): 2142-2153. |
Wang D, Si L, Xie X Y, et al. Simulation of dynamic characteristics of coal-fired unit coupled with supercritical carbon dioxide energy storage cycle[J]. Proceedings of the CSEE, 2023, 43(6): 2142-2153. | |
24 | Hao Y P, He Q, Liu W Y, et al. Thermodynamic analysis of a novel fossil-fuel-free energy storage system with a trans-critical carbon dioxide cycle and heat pump[J]. International Journal of Energy Research, 2020, 44(10): 7924-7937. |
25 | Zhao P, Xu W P, Zhang S Q, et al. Components design and performance analysis of a novel compressed carbon dioxide energy storage system: a pathway towards realizability[J]. Energy Conversion and Management, 2021, 229: 113679. |
26 | Olumayegun O, Wang M H. Dynamic modelling and control of supercritical CO2 power cycle using waste heat from industrial processes[J]. Fuel, 2019, 249: 89-102. |
27 | Zhang Y, Yang K, Li X M, et al. Thermodynamic analysis of energy conversion and transfer in hybrid system consisting of wind turbine and advanced adiabatic compressed air energy storage[J]. Energy, 2014, 77: 460-477. |
28 | Li C, Wang D, Liu D, et al. Mathematical modelling of large-scale compressed air energy storage systems[C]//2019 25th International Conference on Automation and Computing (ICAC). Lancaster, UK: IEEE, 2019: 1-6. |
29 | Powell K M, Edgar T F. Modeling and control of a solar thermal power plant with thermal energy storage[J]. Chemical Engineering Science, 2012, 71: 138-145. |
30 | Fu H L, Shi J, Yuan J Q, et al. Thermodynamic analysis of photothermal-assisted liquid compressed CO2 energy storage system hybrid with closed-cycle drying[J]. Journal of Energy Storage, 2023, 66: 107415. |
31 | Deng T R, Li X H, Wang Q W, et al. Dynamic modelling and transient characteristics of supercritical CO2 recompression Brayton cycle[J]. Energy, 2019, 180: 292-302. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 580
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||