CIESC Journal ›› 2024, Vol. 75 ›› Issue (12): 4761-4769.DOI: 10.11949/0438-1157.20240525
• Energy and environmental engineering • Previous Articles Next Articles
Chao LI1,2,4(), Haowen CHEN1,2,3, Zhen HU1,2, Chenghang WANG1,2, Haozi LYU1,2, Xianyang QIU1,2(
)
Received:
2024-05-17
Revised:
2024-07-28
Online:
2025-01-03
Published:
2024-12-25
Contact:
Xianyang QIU
李超1,2,4(), 陈浩文1,2,3, 胡真1,2, 王成行1,2, 吕昊子1,2, 邱显扬1,2(
)
通讯作者:
邱显扬
作者简介:
李超(1987—),男,博士,副教授,c.li@zzu.edu.cn
基金资助:
CLC Number:
Chao LI, Haowen CHEN, Zhen HU, Chenghang WANG, Haozi LYU, Xianyang QIU. Mechanism of pulsed airflow-flexible porous coupling bubble formation[J]. CIESC Journal, 2024, 75(12): 4761-4769.
李超, 陈浩文, 胡真, 王成行, 吕昊子, 邱显扬. 脉冲气流-柔性孔耦合成泡机制[J]. 化工学报, 2024, 75(12): 4761-4769.
设备名称 | 设备参数 | 用途 |
---|---|---|
高频电磁阀 | JD72, Festo | 脉冲气流元件 |
电磁阀集成控制器(PLC) | BTS-10 | 控制脉冲参数 |
高速摄像机 | FASTCAM MINIUX UX100 | 拍摄气泡群 |
观测窗 | 15 cm×3 cm×20 cm | 透明单层观测 |
气室 | 15 cm×3 cm×1 cm | 均布气流量 |
皮托管 | LPT 500 mm Dwyer | 导出气压 |
压力变送器 | PPM-T127C | 压力信号转换 |
数据采集卡 | USB DAQV1.4 | 配合算法输出数据 |
曝气膜 | EPDM, R=15 cm | 成泡 |
高频振荡电机 | ZXLDG | 产生额外振荡 |
振动监测传感器 | WTVB01-485 | 监测膜面振荡位移 |
Table 1 Main experimental equipment and parameters
设备名称 | 设备参数 | 用途 |
---|---|---|
高频电磁阀 | JD72, Festo | 脉冲气流元件 |
电磁阀集成控制器(PLC) | BTS-10 | 控制脉冲参数 |
高速摄像机 | FASTCAM MINIUX UX100 | 拍摄气泡群 |
观测窗 | 15 cm×3 cm×20 cm | 透明单层观测 |
气室 | 15 cm×3 cm×1 cm | 均布气流量 |
皮托管 | LPT 500 mm Dwyer | 导出气压 |
压力变送器 | PPM-T127C | 压力信号转换 |
数据采集卡 | USB DAQV1.4 | 配合算法输出数据 |
曝气膜 | EPDM, R=15 cm | 成泡 |
高频振荡电机 | ZXLDG | 产生额外振荡 |
振动监测传感器 | WTVB01-485 | 监测膜面振荡位移 |
1 | 杨岸明. 城市污水处理厂曝气节能方法与技术[D]. 北京: 北京工业大学, 2012. |
Yang A M. Energy conservation methodand technology of aerationin municipal wastewater treatment plant[D] Beijing: Beijing University of Technology. 2012 | |
2 | 吴胜军, 方为茂, 赵红卫, 等. 高速剪切流剪切形成微气泡的研究[J]. 水处理技术, 2009, 35(5): 44-48. |
Wu S J, Fang W M, Zhao H W, et al. Research on microbubbles formation by high-speed cross-flow[J]. Technology of Water Treatment, 2009, 35(5): 44-48. | |
3 | 朱五星, 舒锦琼. 城市污水处理厂能量优化策略研究[J]. 给水排水, 2005, 31(12): 31-33. |
Zhu W X, Shu J Q. Study on energy optimization strategy of municipal wastewater treatment plant[J]. Water & Wastewater Engineering, 2005, 31(12): 31-33. | |
4 | 羊寿生. 城市污水厂的能源消耗[J]. 建筑技术通讯(给水排水), 1984(6): 15-19. |
Yang S S. Energy consumption of urban sewage treatment plants[J]. Building Technology Communication (Water Supply and Drainage), 1984(6): 15-19. | |
5 | Sørensen J, Andersen J, Andreasen K, et al. Experience with the upgrading of 14 treatment plants to N & P removal in the municipality of Aarhus[J]. Water Science and Technology, 1998, 37(9): 201-208. |
6 | Rice R G, Tupperainen J M I, Hedge R M. Dispersion and hold‐up in bubble columns—comparison of rigid and flexible spargers[J]. The Canadian Journal of Chemical Engineering, 1981, 59(6): 677-687. |
7 | He Y, Zhang T, Lv L, et al. Application of microbubbles in chemistry, wastewater treatment, medicine, cosmetics, and agriculture: a review[J]. Environmental Chemistry Letters, 2023, 21(6): 3245-3271. |
8 | 王夙, 刘峻. 污水处理厂能耗分析与节能技术研究进展[J]. 四川有色金属, 2011,(3): 59-64. |
Wang S, Liu J. Study on energyanalysis and saving in wastewater treatment plant[J]. Sichuan Nonferrous Metals, 2011, (3): 59-64. | |
9 | 刘春, 张磊, 杨景亮, 等. 微气泡曝气中氧传质特性研究[J]. 环境工程学报, 2010, 4(3): 585-589. |
Liu C, Zhang L, Yang J L, et al. Characteristics of oxygen transfer in microbubble aeration[J]. Chinese Journal of Environmental Engineering, 2010, 4(3): 585-589. | |
10 | Li M B, Hu L. Experimental investigation of the behaviors of highly deformed bubbles produced by coaxial coalescence[J]. Experimental Thermal and Fluid Science, 2020, 117: 110114. |
11 | Sattari A, Hanafizadeh P. Bubble formation on submerged micrometer-sized nozzles in polymer solutions: an experimental investigation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 564: 10-22. |
12 | Zhang Z Z, Li L X, Xie W, et al. Experimental study of bubble formation process on the micro-orifice in mini channels[J]. Experimental Thermal and Fluid Science, 2020, 117: 110144. |
13 | Chakraborty I, Biswas G, Polepalle S, et al. Bubble formation and dynamics in a quiescent high‐density liquid[J]. AIChE Journal, 2015, 61(11): 3996-4012. |
14 | Kulkarni A A, Joshi J B. Bubble formation and bubble rise velocity in gas-liquid systems: a review[J]. Industrial & Engineering Chemistry Research, 2005, 44(16): 5873-5931. |
15 | Shen Y N, Hu L, Chen W Y, et al. Periodic and aperiodic bubbling in submerged gas-liquid jets through a micro-channel[J]. Physics of Fluids, 2017, 29(4): 047104. |
16 | Zimmerman W B, Tesar V, Butler S, et al. Microbubble generation[J]. Recent Patents on Engineering, 2008, 2(1): 1-8. |
17 | Brittle S, Desai P, Ng W C, et al. Minimising microbubble size through oscillation frequency control[J]. Chemical Engineering Research and Design, 2015, 104: 357-366. |
18 | Yang Z B, Cheng J, Lin R C, et al. Improving microalgal growth with reduced diameters of aeration bubbles and enhanced mass transfer of solution in an oscillating flow field[J]. Bioresource Technology, 2016, 211: 429-434. |
19 | Song A J, Ji Y M, Li C, et al. Modeling and validation of the momentum force for bubble formation from submerged orifices with an oscillatory air supply[J]. Chemical Engineering Science, 2021, 233: 116387. |
20 | Song A J, Zhao S J, Li C, et al. A quantitative study on the decreased diameter of bubbles generated from a submerged orifice with an oscillatory air supply[J]. Industrial & Engineering Chemistry Research, 2022, 61(8): 3113-3122. |
21 | Kupferberg A. Bubble formation at a submerged orifice above a gas chamber of finite volume[J]. Trans. Inst. Chem. Eng., 1969, 47: T241-T250. |
22 | Gharat S D, Joshi J B. Transport phenomena in bubble column reactors (Ⅰ): Flow pattern[J]. The Chemical Engineering Journal, 1992, 48(3): 141-151. |
23 | Nesset J E, Finch J A, Gomez C O. Operating variables affecting the bubble size in forced-air mechanical flotation machines[C]//Proceedings of the Australasian Institute of Mining and Metallurgy Publication Series. Fremantle, Australia, 2007: 55-65. |
24 | Tan Y H, Finch J A. Frother structure-property relationship: aliphatic alcohols and bubble rise velocity[J]. Minerals Engineering, 2016, 96: 33-38. |
25 | Tan Y H, Rafiei A A, Elmahdy A, et al. Bubble size, gas holdup and bubble velocity profile of some alcohols and commercial frothers[J]. International Journal of Mineral Processing, 2013, 119: 1-5. |
26 | Vaishnavi G N V, Ramarajan J, Jayavel S. Numerical studies of bubble formation dynamics in gas-liquid interaction using volume of fluid (VOF) method[J]. Thermal Science and Engineering Progress, 2023, 39: 101718. |
27 | Shirota M, Sanada T, Sato A, et al. Formation of a submillimeter bubble from an orifice using pulsed acoustic pressure waves in gas phase[J]. Physics of Fluids, 2008, 20(4): 3301. |
28 | Tesař V. Mechanisms of fluidic microbubble generation (Part Ⅱ): Suppressing the conjunctions[J]. Chemical Engineering Science, 2014, 116: 849-856. |
29 | Li C, Dong L S, Wang L G. Improvement of flotation recovery using oscillatory air supply[J]. Minerals Engineering, 2019, 131: 321-324. |
30 | Loubière K, Hébrard G, Guiraud P. Dynamics of bubble growth and detachment from rigid and flexible orifices[J]. The Canadian Journal of Chemical Engineering, 2003, 81(3/4): 499-507. |
31 | Baker C T, de Nevers N. Bubble formation at vibrated orifices: medium‐chamber‐volume region[J]. AIChE Journal, 1984, 30(1): 37-44. |
[1] | Kuangxi LI, Peiqian YU, Jiangyun WANG, Haoran WEI, Zhigang ZHENG, Liuhai FENG. Flow analysis and structure optimization of micro-bubble swirling air flotation device [J]. CIESC Journal, 2024, 75(S1): 223-234. |
[2] | He ZHAO, Yingjie FEI, Chunying ZHU, Taotao FU, Youguang MA. Deformation and breakup behavior of nanoparticle-stabilized bubbles in high-viscosity systems [J]. CIESC Journal, 2024, 75(6): 2180-2189. |
[3] | Yuhui SHI, Jiyuan XING, Xuehan JIANG, Shuang YE, Weiguang HUANG. Numerical simulation of bubble breakup and coalescence in centrifugal impeller based on PBM [J]. CIESC Journal, 2024, 75(5): 1816-1829. |
[4] | Wei WANG, Xu BAI, Xiang ZHAO, Xueliang MA, Wei LIN, Jiuyang YU. Optimization of air flotation cyclone separation conditions based on response surface methodology [J]. CIESC Journal, 2024, 75(5): 1929-1938. |
[5] | Xuan WU, Xiaofeng LI, Hui DONG, Gaojin SUN, Xiaopei LIU, Zhengyang WANG. Experimental study of characteristics of particle adhesion rate on rising behavior of particle-loaded bubbles [J]. CIESC Journal, 2024, 75(10): 3507-3517. |
[6] | Yingjie FEI, Chunying ZHU, Taotao FU, Xiqun GAO, Youguang MA. Breakup dynamics of bubbles stabilized by nanoparticles with permanent obstruction in a microfluidic Y-junction [J]. CIESC Journal, 2022, 73(1): 213-221. |
[7] | Wenlong ZHANG, Yan HOU, Haibo JIN, Lei MA, Guangxiang HE, Suohe YANG, Xiaoyan GUO, Rongyue ZHANG. Numerical simulation of air-water two-phase flow under elevated pressures and temperatures using CFD-PBM coupled model [J]. CIESC Journal, 2021, 72(9): 4594-4606. |
[8] | WANG Zongxu,LI Zixin,BAI Lu,DONG Haifeng,ZHANG Xiangping. Formation and stability of nanobubble at solid/liquid interface [J]. CIESC Journal, 2021, 72(7): 3466-3477. |
[9] | WANG Yonglei, LIU Baozhen, ZHANG Kefeng, LI Mei, JIA Ruibao, SONG Wuchang, LI Jun. Construction and operation characteristics of countercurrent-cocurrent dissolved air flotation [J]. CIESC Journal, 2016, 67(12): 5252-5258. |
[10] | CHEN Hongtao, LIANG Hongbao, MO Rui, ZHU Sha, YANG Zhiping. Bumping mechanism of aging oils [J]. CIESC Journal, 2015, 66(12): 4823-4828. |
[11] | SUN Tao, LI Weizhong, YANG Baicheng, ZHU Puqing. Three-dimensional numerical simulation of multiple bubbles rising and interaction with lattice Boltzmann method [J]. CIESC Journal, 2013, 64(5): 1586-1591. |
[12] | FAN Wenyuan, MA Youguang, LI Xiaolei, LI Huaizhi. Study on the Flow Field around Two Parallel Moving Bubbles and Interaction Between Bubbles Rising in CMC Solutions by PIV [J]. , 2009, 17(6): 904-913. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 146
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 178
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||