CIESC Journal ›› 2024, Vol. 75 ›› Issue (5): 1929-1938.DOI: 10.11949/0438-1157.20231315
• Separation engineering • Previous Articles Next Articles
Wei WANG1,2(), Xu BAI1,2, Xiang ZHAO1,2, Xueliang MA1,2, Wei LIN1,2(), Jiuyang YU1,2
Received:
2023-12-08
Revised:
2024-02-16
Online:
2024-06-25
Published:
2024-05-25
Contact:
Wei LIN
汪威1,2(), 白旭1,2, 赵翔1,2, 马学良1,2, 林纬1,2(), 喻九阳1,2
通讯作者:
林纬
作者简介:
汪威(1984—),男,博士,副教授,312945886@qq.com
基金资助:
CLC Number:
Wei WANG, Xu BAI, Xiang ZHAO, Xueliang MA, Wei LIN, Jiuyang YU. Optimization of air flotation cyclone separation conditions based on response surface methodology[J]. CIESC Journal, 2024, 75(5): 1929-1938.
汪威, 白旭, 赵翔, 马学良, 林纬, 喻九阳. 基于响应面法的气浮旋流分离条件优化[J]. 化工学报, 2024, 75(5): 1929-1938.
Add to citation manager EndNote|Ris|BibTeX
实验编号 | 气含率/% |
---|---|
1 | 1.57 |
2 | 1.96 |
3 | 1.75 |
4 | 1.87 |
平均 | 1.78 |
Table 1 Determination of gas content ratio
实验编号 | 气含率/% |
---|---|
1 | 1.57 |
2 | 1.96 |
3 | 1.75 |
4 | 1.87 |
平均 | 1.78 |
项目 | 因素-1 | 因素0 | 因素1 |
---|---|---|---|
微气泡密度(M)X1 | 2.06 | 2.88 | 3.70 |
旋转角速度X2 | 380 | 460 | 540 |
絮凝剂浓度X3 | 30 | 60 | 90 |
Table 2 Response surface experiment factors and level design
项目 | 因素-1 | 因素0 | 因素1 |
---|---|---|---|
微气泡密度(M)X1 | 2.06 | 2.88 | 3.70 |
旋转角速度X2 | 380 | 460 | 540 |
絮凝剂浓度X3 | 30 | 60 | 90 |
组别 | X1 | X2 | X3 | 气浮浓缩倍数 实验值 | 气浮浓缩倍数 预测值 |
---|---|---|---|---|---|
1 | 0 | -1 | 1 | 11.30 | 10.34 |
2 | 0 | 1 | -1 | 6.18 | 7.14 |
3 | 1 | 0 | -1 | 3.52 | 4.30 |
4 | 0 | 0 | 0 | 20.68 | 22.73 |
5 | 0 | 0 | 0 | 19.35 | 22.73 |
6 | 1 | -1 | 0 | 6.38 | 7.87 |
7 | -1 | -1 | 0 | 10.00 | 11.74 |
8 | 0 | 0 | 0 | 20.00 | 22.73 |
9 | 0 | 1 | 1 | 28.23 | 30.50 |
10 | -1 | 0 | -1 | 8.21 | 8.73 |
11 | 0 | 0 | 0 | 27.27 | 22.73 |
12 | 0 | -1 | -1 | 23.07 | 20.80 |
13 | 1 | 1 | 0 | 3.26 | 1.52 |
14 | -1 | 0 | 1 | 25.00 | 24.22 |
15 | 0 | 0 | 0 | 26.37 | 22.73 |
16 | -1 | 1 | 0 | 26.08 | 24.59 |
17 | 1 | 0 | 1 | 2.22 | 1.70 |
Table 3 Comparison of experimental and predicted values of response surfaces
组别 | X1 | X2 | X3 | 气浮浓缩倍数 实验值 | 气浮浓缩倍数 预测值 |
---|---|---|---|---|---|
1 | 0 | -1 | 1 | 11.30 | 10.34 |
2 | 0 | 1 | -1 | 6.18 | 7.14 |
3 | 1 | 0 | -1 | 3.52 | 4.30 |
4 | 0 | 0 | 0 | 20.68 | 22.73 |
5 | 0 | 0 | 0 | 19.35 | 22.73 |
6 | 1 | -1 | 0 | 6.38 | 7.87 |
7 | -1 | -1 | 0 | 10.00 | 11.74 |
8 | 0 | 0 | 0 | 20.00 | 22.73 |
9 | 0 | 1 | 1 | 28.23 | 30.50 |
10 | -1 | 0 | -1 | 8.21 | 8.73 |
11 | 0 | 0 | 0 | 27.27 | 22.73 |
12 | 0 | -1 | -1 | 23.07 | 20.80 |
13 | 1 | 1 | 0 | 3.26 | 1.52 |
14 | -1 | 0 | 1 | 25.00 | 24.22 |
15 | 0 | 0 | 0 | 26.37 | 22.73 |
16 | -1 | 1 | 0 | 26.08 | 24.59 |
17 | 1 | 0 | 1 | 2.22 | 1.70 |
来源 | 平方和 | 自由度 | 均方 | F值 | P值 | |
---|---|---|---|---|---|---|
Model | 1398.80 | 9 | 155.42 | 13.38 | 0.0012 | Significant |
A | 363.29 | 1 | 363.29 | 31.27 | 0.0008 | |
B | 21.13 | 1 | 21.13 | 1.82 | 0.2195 | |
C | 83.01 | 1 | 83.01 | 7.14 | 0.0319 | |
AB | 92.16 | 1 | 92.16 | 7.93 | 0.0259 | |
AC | 81.81 | 1 | 81.81 | 7.04 | 0.0328 | |
BC | 285.95 | 1 | 285.95 | 24.61 | 0.0016 | |
A2 | 370.52 | 1 | 370.52 | 31.89 | 0.0008 | |
B2 | 15.57 | 1 | 15.57 | 1.34 | 0.2849 | |
C2 | 55.05 | 1 | 55.05 | 4.74 | 0.0660 | |
Residual | 81.33 | 7 | 11.62 | |||
Lack of fit | 24.39 | 3 | 8.13 | 0.57 | 0.6633 | Not significant |
Pure error | 56.94 | 4 | 14.24 | |||
Cor total | 1480.14 | 16 |
Table 4 Analysis of variance (ANOVA)
来源 | 平方和 | 自由度 | 均方 | F值 | P值 | |
---|---|---|---|---|---|---|
Model | 1398.80 | 9 | 155.42 | 13.38 | 0.0012 | Significant |
A | 363.29 | 1 | 363.29 | 31.27 | 0.0008 | |
B | 21.13 | 1 | 21.13 | 1.82 | 0.2195 | |
C | 83.01 | 1 | 83.01 | 7.14 | 0.0319 | |
AB | 92.16 | 1 | 92.16 | 7.93 | 0.0259 | |
AC | 81.81 | 1 | 81.81 | 7.04 | 0.0328 | |
BC | 285.95 | 1 | 285.95 | 24.61 | 0.0016 | |
A2 | 370.52 | 1 | 370.52 | 31.89 | 0.0008 | |
B2 | 15.57 | 1 | 15.57 | 1.34 | 0.2849 | |
C2 | 55.05 | 1 | 55.05 | 4.74 | 0.0660 | |
Residual | 81.33 | 7 | 11.62 | |||
Lack of fit | 24.39 | 3 | 8.13 | 0.57 | 0.6633 | Not significant |
Pure error | 56.94 | 4 | 14.24 | |||
Cor total | 1480.14 | 16 |
Fig.13 Contour plots and three-dimensional response surface plots of interaction of microbubble density, rotational angular velocity, and flocculant concentration
1 | Liu Y, Lu H, Li Y, et al. A review of treatment technologies for produced water in offshore oil and gas fields[J]. Science of Total Environment, 2021, 775: 145485. |
2 | Wang C Y, Wang Z X, Wei X Y, et al. A numerical study and flotation experiments of bicyclone column F lotation for treating of produced water from ASP flooding[J]. Journal of Water Process Engineering, 2019, 32: 100972. |
3 | 王江云, 魏浩然, 李佳奇, 等. 旋流气浮装置内流动规律数值模拟[J]. 石油学报(石油加工), 2023, 39(3): 587-598. |
Wang J Y, Wei H R, Li J Q, et al. Numerical simulation of flow laws in swirling air flotation devices[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2023, 39(3): 587-598. | |
4 | Yan S L, Yang X Y, Bai Z S, et al. Drop attachment behavior of oil droplet-gas bubble interactions during flotation[J]. Chemical Engineering Science, 2020, 223: 115740. |
5 | Liang Q, Wang X J, Zhang X Y, et al. Comparison of the effects of two flocculants on the interaction between dispersed phases in produced water during air floatation-flocculation[J]. Journal of Water Process Engineering, 2023, 51: 103483. |
6 | Zhang X Y, Wang X J, Ren X L, et al. Oil aerated flocs formation assisted by a flocculant for heavy oil produced water treatment[J]. Journal of Water Process Engineering, 2022, 49: 103141. |
7 | 李永丰, 刘敏, 王晓飞, 等. 海上油田含聚生产水旋流气浮装置试验研究[J]. 油气田地面工程, 2016, 35(10): 22-25. |
Li Y F, Liu M, Wang X F, et al. Cyclone flotation unit test and research on produced water containing polymer in offshore oilfield[J]. Oil-Gas Field Surface Engineering, 2016, 35(10): 22-25. | |
8 | 张孝光. 气浮旋流一体化除油设备现场应用研究[D]. 大庆: 东北石油大学, 2016. |
Zhang X G. Research on field application in oil removal device of air floatation cyclone integration[D]. Daqing: Northeast Petroleum University, 2016. | |
9 | 张雷. 超声强化工艺处理三元驱采油污水和含油污泥效能的研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. |
Zhang L. Treating efficiency of ASP flooding produced wasterwater and oily sludge by ultrasound enhancement process[D]. Harbin: Harbin Institute of Technology, 2014. | |
10 | Wu L, Deng J J, Liu H S, et al. Understanding synergistic mechanisms of silicate decorated polyaluminium chloride and organic polymer flocculation for enhancing polymer-flooding wastewater treatment[J]. Process Safety and Environmental Protection, 2023, 170: 1-10. |
11 | Rajapakse N, Zargar M, Sen T, et al. Effects of influent physicochemical characteristics on air dissolution, bubble size and rise velocity in dissolved air flotation: a review[J]. Separation and Purification Technology, 2022, 289: 120772. |
12 | Kim S J, Choi J, Jeon Y T, et al. Microbubble-inducing characteristics depending on various nozzle and pressure in dissolved air flotation process[J]. KSCE Journal of Civil Engineering, 2015, 19(3): 558-563. |
13 | 张义科, 陈阿强, 王振波. 气浮池接触区微气泡粒径及气含率分布实验研究[J]. 科学技术与工程, 2017, 17(1): 73-78. |
Zhang Y K, Chen A Q, Wang Z B. The experiment research on the ddistribution of micro bubble size and gas content at the contact zone of dissolved air flotation tank[J]. Science Technology and Engineering, 2017, 17(1): 73-78. | |
14 | Dassey A, Theegala C. Optimizing the air dissolution parameters in an unpacked dissolved air flotation system[J]. Water, 2011, 4(1): 1-11. |
15 | 付鹏波, 黄渊, 王剑刚, 等. 旋流分离过程强化新技术[J]. 化工进展, 2020, 39(12): 4766-4778. |
Fu P B, Huang Y, Wang J G, et al. Process intensification technology for hydrocyclone separation[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4766-4778. | |
16 | Elsayed K, Lacor C. Numerical modeling of the flow field and performance in cyclones of different cone-tip diameters[J]. Computers and Fluids, 2011, 51(1): 48-59. |
17 | Cui G W, Xie W W, Zhang Y, et al. Study on separation performance of tri-cone water medium cyclone based on CFD[J]. International Journal of Coal Preparation and Utilization, 2021, 41(12): 879-892. |
18 | Hamed A M, Hassan N M. Turbulent flow characteristics in a swirl flow generator[J]. Journal of Mechanical Science and Technology, 2016, 30(11): 5127-5136. |
19 | 喻九阳, 孟观林, 彭康, 等. 旋流器固-液分离的数值模拟[J]. 武汉工程大学学报, 2021, 43(2): 207-211. |
Yu J Y, Meng G L, Peng K, et al. Numerical simulation of solid-liquid separation in cyclone[J]. Journal of Wuhan University of Engineering, 2021, 43(2): 207-211. | |
20 | Qi H B, Zhang Y J, Wang Q S, et al. Experimental investigation of optical properties of oily sewage with different pH environment[J]. Optik, 2019, 183: 338-345. |
21 | 于忠臣, 牛源麟, 钟柳波, 等. 紫外分光光度法对超高浓度含油废水的测定[J]. 当代化工, 2015, 44(3): 653-656. |
Yu Z C, Niu Y L, Zhong L B, et al. Determination of ultra-high concentration of oily wastewater by UV spectrophotometry[J]. Contemporary Chemical Industry, 2015, 44(3): 653-656. | |
22 | Noh S Y, Heo J E, Woo S H, et al. Performance improvement of a cyclone separator using multiple subsidiary cyclones[J]. Powder Technology, 2018, 338: 145-152. |
23 | Liu J, Liu H Y, Guo J, et al. Experimental research on a cyclone air flotation separator for polymer-containing wastewater[J]. Chemistry and Technology of Fuels and Oils, 2021, 57(4): 705-712. |
24 | You Z Y, Xu H Y, Sun Y J, et al. Effective treatment of emulsified oil wastewater by the coagulation-flotation process[J]. RSC Advances, 2018, 8(71): 40639-40646. |
25 | 张义科. 平流式加压溶气气浮除油技术实验研究[D]. 东营: 中国石油大学(华东), 2017. |
Zhang Y K. Research on oil-water separation technology with the advection-type pressurized dissolved air flotation[D]. Dongying: China University of Petroleum, 2017. | |
26 | Song T, Yao Y, Ni L. Response surface method to study the effect of conical surface and vortex-finder lengths on de-foulant hydrocyclone with reflux ejector[J]. Separation and Purification Technology, 2020, 253: 117511. |
27 | Hussain Vali R, Tuan H A, Marouf Wani M, et al. Optimization of variable compression ratio diesel engine fueled with zinc oxide nanoparticles and biodiesel emulsion using response surface methodology[J]. Fuel, 2022, 323: 124290. |
28 | Jensen W A. Response surface methodology: process and product optimization using designed experiments 4th edition[J]. Journal of Quality Technology, 2017, 49(2): 186-187. |
29 | Bezerra M A, Santelli,R E, Oliveira E P, et al. Response surface methodology (RSM) as a tool for optimization in analytical chemistry[J]. Talanta, 2008, 76(5): 965-977. |
30 | Kuhnt S, Steinberg D M. Design and analysis of computer experiments[J].Asta-Advances in Statistical Analysis, 2010, 94(4): 307-309. |
[1] | Rufeng XU, Yucheng CHEN, Dan GAO, Jingyu JIAO, Dong GAO, Haibin WANG, Shanjing YAO, Dongqiang LIN. Model-assisted process optimization of ion-exchange chromatography for monoclonal antibody charge variant separation [J]. CIESC Journal, 2024, 75(5): 1903-1911. |
[2] | Zijia ZHANG, Xinyue QIU, Xiang SUN, Zhibin LUO, Haizhong LUO, Gaohong HE, Xuehua RUAN. Progress in molecular structure design for polyimide membrane materials to enhance CO2 permeation ability [J]. CIESC Journal, 2024, 75(4): 1137-1152. |
[3] | Kaibo ZHANG, Jiaxin SHEN, Yuxia LI, Peng TAN, Xiaoqin LIU, Linbing SUN. Controllable construction of Cu(Ⅰ) in Y zeolite for adsorptive separation of ethylene/ethane [J]. CIESC Journal, 2024, 75(4): 1607-1615. |
[4] | Yiru WEN, Jia FU, Dahuan LIU. Advances in machine learning-based materials research for MOFs: energy gas adsorption separation [J]. CIESC Journal, 2024, 75(4): 1370-1381. |
[5] | Xiao DONG, Zhishan BAI, Xiaoyong YANG, Wei YIN, Ningpu LIU, Qifan YU. Research and industrial application of coupled impurity removal technology in CHPPO process oxidation liquids [J]. CIESC Journal, 2024, 75(4): 1630-1641. |
[6] | Ying LIU, Fang ZHENG, Qiwei YANG, Zhiguo ZHANG, Qilong REN, Zongbi BAO. Recent progress in adsorption and separation of xylene isomers [J]. CIESC Journal, 2024, 75(4): 1081-1095. |
[7] | Tianyi LI, Yutai WU, Yongsheng WANG, Jiarui GU, Yiheng SONG, Fengcheng YANG, Guangping HAO. Advances in light isotopes separation and catalytic labeling [J]. CIESC Journal, 2024, 75(4): 1284-1301. |
[8] | Jun LI, Liang ZHAO, Jinsen GAO, Chunming XU. Research progress of extraction technology in processing different distillate by grade and composition [J]. CIESC Journal, 2024, 75(4): 1065-1080. |
[9] | Tiantian LYU, Min YUAN, Jiang WANG, Meizhen GAO, Jiahui YANG, Hong XU, Jinxiang DONG, Qi SHI. Preparation of ZTIF based hydrophobic micro-mesoporous carbon and their adsorption and separation performance of 5-hydroxymethylfurfural [J]. CIESC Journal, 2024, 75(4): 1642-1654. |
[10] | Yuan MENG, Shan NI, Yafeng LIU, Wenjie WANG, Yue ZHAO, Yudan ZHU, Liangrong YANG. Adsorption properties of functionalized porous carbon nitride materials for uranium [J]. CIESC Journal, 2024, 75(4): 1616-1629. |
[11] | Binyu MO, Yaxin ZHANG, Guozhen LIU, Gongping LIU, Wanqin JIN. Recent progress of metal-organic framework membranes for mono/divalent ions separation [J]. CIESC Journal, 2024, 75(4): 1183-1197. |
[12] | Lei XING, Shuai GUAN, Minghu JIANG, Lixin ZHAO, Meng CAI, Hailong LIU, Dehai CHEN. Study on structure optimization and performance of downhole gas-liquid hydrocyclone under high gas-liquid ratio [J]. CIESC Journal, 2024, 75(3): 900-913. |
[13] | Xiangjun MENG, Yingxi HUA, Changjin ZHANG, Chi ZHANG, Linrui YANG, Ruoxi YANG, Jianyi LIU, Chunjian XU. Preparation and purification of 6N electronic-grade deuterium gas [J]. CIESC Journal, 2024, 75(1): 377-390. |
[14] | Yuting ZHENG, Guandong FANG, Mengbo ZHANG, Haomiao ZHANG, Jingdai WANG, Yongrong YANG. Research progress on micro-chemical rectification and separation technology [J]. CIESC Journal, 2024, 75(1): 47-59. |
[15] | Jiao ZHU, Liping LUAN, Shenzhen CONG, Xinlei LIU. Organic membranes for H2 separation [J]. CIESC Journal, 2024, 75(1): 138-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||