CIESC Journal ›› 2024, Vol. 75 ›› Issue (12): 4749-4760.DOI: 10.11949/0438-1157.20240638
• Energy and environmental engineering • Previous Articles Next Articles
Jiajia LIANG(), Cui LI, Yuan MA(
), Yining HUANG, Lei WANG, Yanzhong LI
Received:
2024-06-07
Revised:
2024-08-14
Online:
2025-01-03
Published:
2024-12-25
Contact:
Yuan MA
通讯作者:
马原
作者简介:
梁佳佳(2000—),女,博士研究生,dandan2193797564@stu.xjtu.edu.cn
基金资助:
CLC Number:
Jiajia LIANG, Cui LI, Yuan MA, Yining HUANG, Lei WANG, Yanzhong LI. Research on the performance of high-efficiency composite insulation scheme for liquid hydrogen tank in orbit environment[J]. CIESC Journal, 2024, 75(12): 4749-4760.
梁佳佳, 李翠, 马原, 黄奕宁, 王磊, 厉彦忠. 在轨环境液氢贮箱高效复合绝热方案性能研究[J]. 化工学报, 2024, 75(12): 4749-4760.
方案 | 结构形式 |
---|---|
一 | VDMLI |
二 | VDMLI+SVCS |
三 | VDMLI+DVCS |
四 | VDMLI+SVCS+P-O |
五 | VDMLI+DVCS+P-O |
Table 1 Five composite insulation schemes for liquid hydrogen storage tanks
方案 | 结构形式 |
---|---|
一 | VDMLI |
二 | VDMLI+SVCS |
三 | VDMLI+DVCS |
四 | VDMLI+SVCS+P-O |
五 | VDMLI+DVCS+P-O |
结构 | 参数 | 数值 |
---|---|---|
SOFI | 厚度/mm | 35 |
密度/(kg/m3) | 36.8 | |
VDMLI | 厚度/mm | 37.5 |
总层数 | 45 | |
层密度/(层/cm) | 8,12,16 | |
密度/(kg/m2) | 0.01515 | |
VCS | 冷屏面积/ m2 | 35.74 |
冷屏厚度/mm | 0.50 | |
管道数量 | 4 | |
管道长度/m | 5.12 | |
管道内径/mm | 11.70 | |
管道厚度/mm | 0.50 | |
密度/(kg/m3) | 2660 | |
P-O | 催化剂密度/(kg/m3) | 5240 |
填料空隙率 | 0.5 |
Table 2 Geometric parameters of adiabatic structure[20-22]
结构 | 参数 | 数值 |
---|---|---|
SOFI | 厚度/mm | 35 |
密度/(kg/m3) | 36.8 | |
VDMLI | 厚度/mm | 37.5 |
总层数 | 45 | |
层密度/(层/cm) | 8,12,16 | |
密度/(kg/m2) | 0.01515 | |
VCS | 冷屏面积/ m2 | 35.74 |
冷屏厚度/mm | 0.50 | |
管道数量 | 4 | |
管道长度/m | 5.12 | |
管道内径/mm | 11.70 | |
管道厚度/mm | 0.50 | |
密度/(kg/m3) | 2660 | |
P-O | 催化剂密度/(kg/m3) | 5240 |
填料空隙率 | 0.5 |
1 | Plachta D W, Johnson W L, Feller J R. Zero boil-off system testing[J]. Cryogenics, 2016, 74: 88-94. |
2 | 王磊, 厉彦忠, 马原, 等. 长期在轨贮存低温推进剂过冷度获取方案研究[J]. 航空动力学报, 2015, 30(11): 2794-2802. |
Wang L, Li Y Z, Ma Y, et al. Investigation on acquisition schemes of cryogenic propellant subcooling for long-term on-orbit storage[J]. Journal of Aerospace Power, 2015, 30(11): 2794-2802. | |
3 | Hastings L, Hedayat A, Brown T M. Analytical modeling and test correlation of variable density multilayer insulation for cryogenic storage[R]. NASA Marshell Space Flight Center, 2004. |
4 | Zheng J P, Chen L B, Wang J, et al. Thermodynamic analysis and comparison of four insulation schemes for liquid hydrogen storage tank[J]. Energy Conversion and Management, 2019, 186: 526-534. |
5 | Wang B, Huang Y H, Li P, et al. Optimization of variable density multilayer insulation for cryogenic application and experimental validation[J]. Cryogenics, 2016, 80: 154-163. |
6 | Zheng J P, Chen L B, Wang J, et al. Thermodynamic modelling and optimization of self-evaporation vapor cooled shield for liquid hydrogen storage tank[J]. Energy Conversion and Management, 2019, 184: 74-82. |
7 | Jiang W B, Zuo Z Q, Huang Y H, et al. Coupling optimization of composite insulation and vapor-cooled shield for on-orbit cryogenic storage tank[J]. Cryogenics, 2018, 96: 90-98. |
8 | Scott R B. Thermal design of large storage vessels for liquid hydrogen and helium[J]. Journal of Research of the National Bureau of Standards, 1957, 58(6): 317-325. |
9 | Kim S Y, Kang B H. Thermal design analysis of a liquid hydrogen vessel[J]. International Journal of Hydrogen Energy, 2000, 25(2): 133-141. |
10 | Sun Z R, Li M J, Qu Z G, et al. A quasi-2D thermodynamic model for performance analysis and optimization of liquid hydrogen storage system with multilayer insulation and vapor-cooled shield[J]. Journal of Energy Storage, 2023, 73: 109128. |
11 | Bliesner R M, Leachman J W, Adam P M. Parahydrogen-orthohydrogen conversion for enhanced vapor-cooled shielding of liquid oxygen tanks[J]. Journal of Thermophysics and Heat Transfer, 2014, 28(4): 717-723. |
12 | Liggett M W. Space-based LH2 propellant storage system: subscale ground testing results[J]. Cryogenics, 1993, 33(4): 438-442. |
13 | Shi C Y, Zhu S L, Wan C C, et al. Performance analysis of vapor-cooled shield insulation integrated with para-ortho hydrogen conversion for liquid hydrogen tanks[J]. International Journal of Hydrogen Energy, 2023, 48(8): 3078-3090. |
14 | Meng C J, Qin X J, Jiang W B, et al. Cooling effect analysis on para-ortho hydrogen conversion coupled in vapor-cooled shield[J]. International Journal of Hydrogen Energy, 2023, 48(41): 15600-15611. |
15 | 孟垂举, 张亮, 黄永华. 蒸气冷却屏内仲-正氢转化释冷效应分析[J]. 真空与低温, 2022, 28(3): 279-284. |
Meng C J, Zhang L, Huang Y H. Analysis of cooling effect of para-ortho hydrogen conversion in vapor cooling shield[J]. Vacuum and Cryogenics, 2022, 28(3): 279-284. | |
16 | Xu Z L, Tan H B, Wu H. Performance comparison of multilayer insulation coupled with vapor cooled shield and different para-ortho hydrogen conversion types[J]. Applied Thermal Engineering, 2023, 234: 121250. |
17 | 黄奕宁, 梁佳佳, 周振君, 等. 液氢箱蒸气冷却屏/仲-正转化复合结构绝热性能预测[J]. 真空与低温, 2023, 29(5): 459-468. |
Huang Y N, Liang J J, Zhou Z J, et al. Thermal insulation performance prediction of integrated composite insulation combining VCS with para-ortho hydrogen conversion for liquid hydrogen tank[J]. Vacuum and Cryogenics, 2023, 29(5): 459-468. | |
18 | 黄奕宁, 王磊, 马原, 等. 多层材料/气冷屏传热二维模型与绝热性能[J]. 华中科技大学学报(自然科学版), 2024, 52(7): 119-125. |
Huang Y N, Wang L, Ma Y, et al. Two-dimensional heat transfer model and adiabatic performance of multi-layer material air-cooled shield [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52(7): 119-125. | |
19 | 吴业正, 厉彦忠. 制冷与低温装置[M]. 北京: 高等教育出版社, 2009: 419-420. |
Wu Y Z, Li Y Z. Refrigeration and Cryogenic Device[M]. Beijing: Higher Education Press, 2009: 419-420. | |
20 | 徐攀, 文键, 厉彦忠, 等. 氢正仲转化耦合流动换热板翅式换热器研究[J]. 西安交通大学学报, 2021, 55(12): 16-24. |
Xu P, Wen J, Li Y Z, et al. Study on hydrogen ortho-para conversion coupled with flow and heat transfer of the plate fin heat exchanger[J]. Journal of Xi'an Jiaotong University, 2021, 55(12): 16-24. | |
21 | Jiang W B, Zuo Z Q, Sun P J, et al. Thermal analysis of coupled vapor-cooling-shield insulation for liquid hydrogen-oxygen pair storage[J]. International Journal of Hydrogen Energy, 2022, 47(12): 8000-8014. |
22 | Martin J, Hastings L. Large-scale liquid hydrogen testing of variable density multilayer insulation with a foam substrate[R]. NASA Marshell Space Flight Center, 2001. |
23 | 黄永华, 蒋文兵, 孙培杰, 等. 轻质低流阻低温蒸气冷却屏: 112197635A[P]. 2021-01-08. |
Huang Y H, Jiang W B, Sun P J, et al. Light low flow resistance low-temperature steam cooling screen: 112197635A[P]. 2021-01-08. | |
24 | 冶文莲, 王田刚, 王小军, 等. 应用于低温贮箱的变密度多层绝热传热分析[J]. 低温与超导, 2012, 40(12): 5-8. |
Ye W L, Wang T G, Wang X J, et al. Heat transfer analysis of variable density multi-layer insulation for cryogenic storage tank[J]. Cryogenics & Superconductivity, 2012, 40(12): 5-8. | |
25 | 朱浩唯, 黄永华, 许奕辉, 等. 变密度多层绝热的理论分析[J]. 低温工程, 2011(6): 42-46. |
Zhu H W, Huang Y H, Xu Y H, et al. Performance optimization and analysis of variable density multilayer insulation[J]. Cryogenics, 2011(6): 42-46. | |
26 | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
Li K, Wen J, Xin B P. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank[J]. CIESC Journal, 2023, 74(9): 3786-3796. | |
27 | Johnson W. Thermal performance of cryogenic multilayer insulation at various layer spacings[D]. Orlando, Florida, United States: University of Central Florida, 2010. |
28 | Liu Z, Li Y Z, Xie F S, et al. Thermal performance of foam/MLI for cryogenic liquid hydrogen tank during the ascent and on orbit period[J]. Applied Thermal Engineering, 2016, 98: 430-439. |
29 | Liang J J, Ma Y, Li Y Z, et al. Feasibility study on space reorientation for liquid hydrogen tanks by means of evaporated exhaust gas[J]. Processes, 2023, 11(4): 1278. |
30 | Pedrow B P, Muniyal Krishna S K, Shoemake E D, et al. Parahydrogen-orthohydrogen conversion on catalyst-loaded scrim for vapor-cooled shielding of cryogenic storage vessels[J]. Journal of Thermophysics and Heat Transfer, 2021, 35(1): 142-151. |
31 | Nast T, Frank D, Burns K. Cryogenic propellant boil-off reduction approaches[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: AIAA, 2011: AIAA2011-806. |
[1] | Guanyu REN, Yifei ZHANG, Xinze LI, Wenjing DU. Numerical study on flow and heat transfer characteristics of airfoil printed circuit heat exchangers [J]. CIESC Journal, 2024, 75(S1): 108-117. |
[2] | Xinze LI, Shuangxing ZHANG, Guanyu REN, Rui HONG, Wenjing DU. Thermal performance of pulsating heat pipe for high power LED thermal management [J]. CIESC Journal, 2024, 75(S1): 126-134. |
[3] | Xinyu DONG, Longfei BIAN, Yiyi YANG, Yuxuan ZHANG, Lu LIU, Teng WANG. Study on flow and heat transfer mechanism of supercritical CO2 in inclined upward tube under cooling conditions [J]. CIESC Journal, 2024, 75(S1): 195-205. |
[4] | Meilin SHI, Lianda ZHAO, Xingjian DENG, Jingsong WANG, Haibin ZUO, Qingguo XUE. Research progress on catalytic methane reforming process [J]. CIESC Journal, 2024, 75(S1): 25-39. |
[5] | Su TANG, Zi'ao ZHENG, Hanze WEI, Xiaoling XU, Xiaoqiang ZHAI. Preparation and thermal conductivity reinforcement of PMMA/PEG600/CNT composite shaped phase change materials [J]. CIESC Journal, 2024, 75(S1): 309-320. |
[6] | Huanjuan ZHAO, Yingxin BAO, Kang YU, Jing LIU, Xinming QIAN. Quantitative experimental study on detonation instability of multi-component [J]. CIESC Journal, 2024, 75(S1): 339-348. |
[7] | Siyu QIN, Yijia LIU, Jiacheng YANG, Wei TONG, Liwen JIN, Xiangzhao MENG. Characteristics of gas-liquid two-phase heat transfer in a confined vapor chamber [J]. CIESC Journal, 2024, 75(S1): 47-55. |
[8] | Jian HU, Jinghua JIANG, Shengjun FAN, Jianhao LIU, Haijiang ZOU, Wanlong CAI, Fenghao WANG. Research on heat extraction performance of deep U-type borehole heat exchanger [J]. CIESC Journal, 2024, 75(S1): 76-84. |
[9] | Dehui DU, Wei FENG, Jianghui ZHANG, Yanlong XIANG, Gaopan QIAO, Wei LI. Prediction model of flow boiling heat transfer in microfinned hydrophobic composite enhanced tube [J]. CIESC Journal, 2024, 75(S1): 95-107. |
[10] | Jiaying ZHANG, Cong WANG, Yajun WANG. CNT-Co/Bi2O3 catalyst photocatalytic synergistic activation of persulfate for efficient degradation of tetracycline [J]. CIESC Journal, 2024, 75(9): 3163-3175. |
[11] | Ran WANG, Huan WANG, Xiaoyun XIONG, Huimin GUAN, Yunfeng ZHENG, Cailin CHEN, Yucai QIN, Lijuan SONG. Visual analysis of mass transfer enhanced active site utilization efficiency of FCC catalyst [J]. CIESC Journal, 2024, 75(9): 3198-3209. |
[12] | Jingyu WANG, Jia LIU, Jixiang XU, Lei WANG. Synthesis of lamellar PtZn@Silicalite-1 zeolite and its catalytic properties for propane dehydrogenation [J]. CIESC Journal, 2024, 75(9): 3188-3197. |
[13] | Dengxue XING, Liang ZHANG, Wenqiang LI, Jianhua LIANG, Lei QIN, Genlin ZHANG, Chun LI. Synthesis of 18α-glycyrrhizic acid by yeast cells [J]. CIESC Journal, 2024, 75(9): 3266-3276. |
[14] | Dezheng HU, Rong WANG, Shidong WANG, Wenfei YANG, Hongwei ZHANG, Pei YUAN. Construction of amorphous NiP@γ-Al2O3 catalyst rich in Ni δ+ for petroleum resin hydrogenation with enhanced hydrogenation and desulfurization activity [J]. CIESC Journal, 2024, 75(9): 3152-3162. |
[15] | Shuyue LI, Huan WANG, Shaoqiang ZHOU, Zhihong MAO, Yongmin ZHANG, Junwu WANG, Xiuhua WU. Numerical simulation of hydrogen reduction of U3O8 in fluidized bed reactors using CPFD method [J]. CIESC Journal, 2024, 75(9): 3133-3151. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 423
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 145
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||