CIESC Journal ›› 2024, Vol. 75 ›› Issue (12): 4770-4779.DOI: 10.11949/0438-1157.20240343
• Energy and environmental engineering • Previous Articles Next Articles
Qun ZHENG1(), Peiqiang CHEN1,2, Changfu WANG2(
), Chunhua XIONG2, Wanli XU2, Man RUAN2
Received:
2024-03-27
Revised:
2024-08-11
Online:
2025-01-03
Published:
2024-12-25
Contact:
Changfu WANG
郑群1(), 陈培强1,2, 王长富2(
), 熊春华2, 徐万里2, 阮曼2
通讯作者:
王长富
作者简介:
郑群(1962—),男,博士,教授,zhengqun@hrbeu.edu.cn
CLC Number:
Qun ZHENG, Peiqiang CHEN, Changfu WANG, Chunhua XIONG, Wanli XU, Man RUAN. Electrolyte flow characteristics of seawater activated battery[J]. CIESC Journal, 2024, 75(12): 4770-4779.
郑群, 陈培强, 王长富, 熊春华, 徐万里, 阮曼. 海水激活电池电解液流动特性分析[J]. 化工学报, 2024, 75(12): 4770-4779.
参数 | 数值 |
---|---|
密度/(kg/m3) | 1250 |
比热容/(J/(kg·K)) | 4182 |
动力黏性系数/(kg/(m·s)) | 0.0025 |
Table 1 Physical parameters of electrolyte
参数 | 数值 |
---|---|
密度/(kg/m3) | 1250 |
比热容/(J/(kg·K)) | 4182 |
动力黏性系数/(kg/(m·s)) | 0.0025 |
参数 | 实验结果 | 模拟结果 | 相对误差 |
---|---|---|---|
Δp/kPa | 6.015 | 5.606 | 6.80% |
t/s | 2.25 | 2.2 | 2.22% |
Table 2 Comparison between numerical and experimental results
参数 | 实验结果 | 模拟结果 | 相对误差 |
---|---|---|---|
Δp/kPa | 6.015 | 5.606 | 6.80% |
t/s | 2.25 | 2.2 | 2.22% |
序号 | A | B/(°) | C/(ml/min) | VR |
---|---|---|---|---|
1 | 6 | 20 | 100 | 2.508 |
2 | 6 | 30 | 250 | 2.923 |
3 | 6 | 40 | 150 | 2.674 |
4 | 6 | 50 | 300 | 3.037 |
5 | 6 | 60 | 200 | 2.789 |
6 | 8 | 20 | 200 | 1.836 |
7 | 8 | 30 | 100 | 2.008 |
8 | 8 | 40 | 250 | 2.318 |
9 | 8 | 50 | 150 | 2.108 |
10 | 8 | 60 | 300 | 2.359 |
11 | 10 | 20 | 300 | 1.895 |
12 | 10 | 30 | 200 | 1.778 |
13 | 10 | 40 | 100 | 1.605 |
14 | 10 | 50 | 250 | 1.839 |
15 | 10 | 60 | 150 | 1.705 |
16 | 12 | 20 | 150 | 1.433 |
17 | 12 | 30 | 300 | 1.624 |
18 | 12 | 40 | 200 | 1.513 |
19 | 12 | 50 | 100 | 1.373 |
20 | 12 | 60 | 250 | 1.526 |
21 | 14 | 20 | 250 | 1.363 |
22 | 14 | 30 | 150 | 1.227 |
23 | 14 | 40 | 300 | 1.397 |
24 | 14 | 50 | 200 | 1.309 |
25 | 14 | 60 | 100 | 1.194 |
平均值1 | 2.7862 | 1.807 | 1.7376 | — |
平均值2 | 2.1258 | 1.912 | 1.8294 | — |
平均值3 | 1.7644 | 1.9014 | 1.845 | — |
平均值4 | 1.4938 | 1.9332 | 1.9938 | — |
平均值5 | 1.298 | 1.9146 | 2.0624 | — |
R | 1.4882 | 0.1262 | 0.3248 | — |
Table 3 Orthogonal design and numerical results
序号 | A | B/(°) | C/(ml/min) | VR |
---|---|---|---|---|
1 | 6 | 20 | 100 | 2.508 |
2 | 6 | 30 | 250 | 2.923 |
3 | 6 | 40 | 150 | 2.674 |
4 | 6 | 50 | 300 | 3.037 |
5 | 6 | 60 | 200 | 2.789 |
6 | 8 | 20 | 200 | 1.836 |
7 | 8 | 30 | 100 | 2.008 |
8 | 8 | 40 | 250 | 2.318 |
9 | 8 | 50 | 150 | 2.108 |
10 | 8 | 60 | 300 | 2.359 |
11 | 10 | 20 | 300 | 1.895 |
12 | 10 | 30 | 200 | 1.778 |
13 | 10 | 40 | 100 | 1.605 |
14 | 10 | 50 | 250 | 1.839 |
15 | 10 | 60 | 150 | 1.705 |
16 | 12 | 20 | 150 | 1.433 |
17 | 12 | 30 | 300 | 1.624 |
18 | 12 | 40 | 200 | 1.513 |
19 | 12 | 50 | 100 | 1.373 |
20 | 12 | 60 | 250 | 1.526 |
21 | 14 | 20 | 250 | 1.363 |
22 | 14 | 30 | 150 | 1.227 |
23 | 14 | 40 | 300 | 1.397 |
24 | 14 | 50 | 200 | 1.309 |
25 | 14 | 60 | 100 | 1.194 |
平均值1 | 2.7862 | 1.807 | 1.7376 | — |
平均值2 | 2.1258 | 1.912 | 1.8294 | — |
平均值3 | 1.7644 | 1.9014 | 1.845 | — |
平均值4 | 1.4938 | 1.9332 | 1.9938 | — |
平均值5 | 1.298 | 1.9146 | 2.0624 | — |
R | 1.4882 | 0.1262 | 0.3248 | — |
1 | Li Q F, Bjerrum N J. Aluminum as anode for energy storage and conversion: a review[J]. Journal of Power Sources, 2002, 110(1): 1-10. |
2 | Moghanni-Bavil-Olyaei H, Arjomandi J. Performance of Al-1Mg-1Zn-0.1Bi-0.02In as anode for the Al-AgO battery[J]. RSC Advances, 2015, 111(5): 91273-91279. |
3 | Gonzalez-Guerrero M J, Gomez F A. Miniaturized Al/AgO coin shape and self-powered battery featuring painted paper electrodes for portable applications[J]. Sensors and Actuators B: Chemical, 2018, 273(10): 101-107. |
4 | 刘勇, 石治国, 王传东. 水下无人平台用电源的发展现状[J]. 电源技术, 2016, 40(9): 1903-1904. |
Liu Y, Shi Z G, Wang C D. Development of power for unmanned underwater vehicles[J]. Chinese Journal of Power Sources, 2016, 40(9): 1903-1904. | |
5 | Huang G S, Zhao Y C, Wang Y X, et al. Performance of Mg–air battery based on AZ31 alloy sheet with twins[J]. Materials Letters, 2013, 113: 46-49. |
6 | Zhang P J, Liu X, Xue J L, et al. The role of microstructural evolution in improving energy conversion of Al-based anodes for metal-air batteries[J]. Journal of Power Sources, 2020, 451: 227806. |
7 | Xie Q Y, Ma A B, Jiang J H, et al. Discharge properties of ECAP processed AZ31-Ca alloys as anodes for seawater-activated battery[J]. Journal of Materials Research and Technology, 2021, 11: 1031-1044. |
8 | Xiong H Q, Yu K, Yin X, et al. Effects of microstructure on the electrochemical discharge behavior of Mg-6wt%Al-1wt%Sn alloy as anode for Mg-air primary battery[J]. Journal of Alloys and Compounds, 2017, 708: 652-661. |
9 | Wu Z B, Zhang H T, Zou J, et al. Enhancement of the discharge performance of Al-0.5Mg-0.1Sn-0.05Ga (wt.%) anode for Al-air battery by directional solidification technique and subsequent rolling process[J]. Journal of Alloys and Compounds, 2020, 827: 154272. |
10 | Ghasabehi M, Shams M, Kanani H. Multi-objective optimization of operating conditions of an enhanced parallel flow field proton exchange membrane fuel cell[J]. Energy Conversion and Management, 2021, 230: 113798. |
11 | Yue M, Yan J W, Zhang H M, et al. The crucial role of parallel and interdigitated flow channels in a trapezoid flow battery[J]. Journal of Power Sources, 2021, 512: 230497. |
12 | Gundlapalli R, Jayanti S. Performance characteristics of several variants of interdigitated flow fields for flow battery applications[J]. Journal of Power Sources, 2020, 467: 228225. |
13 | Zhou T H, Liu Z Y, Yuan S W, et al. Machine-learning assisted analysis on coupled fluid-dynamics and electrochemical processes in interdigitated channel for iron-chromium flow batteries[J]. Chemical Engineering Journal, 2024, 496: 153904. |
14 | Ghanbarian A, Kermani M J, Scholta J, et al. Polymer electrolyte membrane fuel cell flow field design criteria—application to parallel serpentine flow patterns[J]. Energy Conversion and Management, 2018, 166: 281-296. |
15 | Sharma H, Kumar M. Enhancing power density of a vanadium redox flow battery using modified serpentine channels[J]. Journal of Power Sources, 2021, 494: 229753. |
16 | Chadha K, Martemianov S, Thomas A. Study of new flow field geometries to enhance water redistribution and pressure head losses reduction within PEM fuel cell[J]. International Journal of Hydrogen Energy, 2021, 46(10): 7489-7501. |
17 | Chai Y W, Qu D W, Fan L Y, et al. A double-spiral flow channel of vanadium redox flow batteries for enhancing mass transfer and reducing pressure drop[J]. Journal of Energy Storage, 2024, 78: 110278. |
18 | Chen T, Xiao Y, Chen T Z. The impact on PEMFC of bionic flow field with a different branch[J]. Energy Procedia, 2012, 28: 134-139. |
19 | Xiong X, Wang Z H, Fan Y W, et al. Numerical analysis of cylindrical lithium-ion battery thermal management system based on bionic flow channel structure[J]. Thermal Science and Engineering Progress, 2023, 42: 101879. |
20 | Zheng Q, Xing F, Li X F, et al. Flow field design and optimization based on the mass transport polarization regulation in a flow-through type vanadium flow battery[J]. Journal of Power Sources, 2016, 324: 402-411. |
21 | Ke X Y, Alexander J I D, Prahl J M, et al. Flow distribution and maximum current density studies in redox flow batteries with a single passage of the serpentine flow channel[J]. Journal of Power Sources, 2014, 270: 646-657. |
22 | Ke X Y, Prahl J M, Alexander J I D, et al. Redox flow batteries with serpentine flow fields: distributions of electrolyte flow reactant penetration into the porous carbon electrodes and effects on performance[J]. Journal of Power Sources, 2018, 384: 295-302. |
23 | Sun J, Zheng M L, Yang Z S, et al. Flow field design pathways from lab-scale toward large-scale flow batteries[J]. Energy, 2019, 173: 637-646. |
24 | 王升贵, 袁思鸣, 王海清, 等. 一次电池快速激活带载应用研究[J]. 电源技术, 2021, 45(7): 925-927. |
Wang S G, Yuan S M, Wang H Q, et al. Application research of primary battery rapid activation load operation[J]. Chinese Journal of Power Sources, 2021, 45(7): 925-927. | |
25 | Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225. |
26 | Brackbill J U, Kothe D B, Zemach C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354. |
27 | Zhao W K, Wang L J, Zhang Y N, et al. Snow melting on a road unit as affected by thermal fluids in different embedded pipes[J]. Sustainable Energy Technologies and Assessments, 2021, 46: 101221. |
28 | Zhao W K, Zhang Y N, Cao X Y, et al. Applied thermal process for a hydronic snow-melting system in the coldest provincial capital of China[J]. Applied Thermal Engineering, 2023, 218: 119421. |
29 | Chen P Q, Zheng Q. Investigation on flow field optimization of seawater activated battery based on flow channel structure design[J]. Journal of Energy Storage, 2024, 84: 110798. |
30 | 吕颂, 吴法勇, 王洪斌, 等. 涡轮叶片冷却效果影响因素交互效应分析与试验研究[J]. 推进技术, 2022, 43(5): 278-289. |
Lyu S, Wu F Y, Wang H B, et al. Analysis and experimental research on interaction effect of influencing factors of turbine blade cooling effectiveness[J]. Journal of Propulsion Technology, 2022, 43(5): 278-289. | |
31 | 涂敏, 汤广发, 任承钦, 等. 溶液除湿系统中除湿塔的参数分析[J]. 化工学报, 2010, 61(10): 2546-2551. |
Tu M, Tang G F, Ren C Q, et al. Analysis on parameters of dehumidification tower in liquid desiccant dehumidification systems[J]. CIESC Journal, 2010, 61(10): 2546-2551. |
[1] | Guanyu REN, Yifei ZHANG, Xinze LI, Wenjing DU. Numerical study on flow and heat transfer characteristics of airfoil printed circuit heat exchangers [J]. CIESC Journal, 2024, 75(S1): 108-117. |
[2] | Yong YANG, Zixuan ZU, Yukun LI, Dongliang WANG, Zongliang FAN, Huairong ZHOU. Numerical simulation of CO2 absorption by alkali liquor in T-junction cylindrical microchannels [J]. CIESC Journal, 2024, 75(S1): 135-142. |
[3] | Junhao HUANG, Keliang PANG, Fangyuan SUN, Fujun LIU, Zhiyuan GU, Long HAN, Yanquan DUAN, Yanhui FENG. Influence of bell structure of coke dry quenching furnace on coke distribution [J]. CIESC Journal, 2024, 75(S1): 158-169. |
[4] | Senyang CHEN, Puhang JIN, Zhiming TAN, Gongnan XIE. Numerical study on droplet transport behavior in the serpentine flow channel of PEMFC [J]. CIESC Journal, 2024, 75(S1): 183-194. |
[5] | Xinyu DONG, Longfei BIAN, Yiyi YANG, Yuxuan ZHANG, Lu LIU, Teng WANG. Study on flow and heat transfer mechanism of supercritical CO2 in inclined upward tube under cooling conditions [J]. CIESC Journal, 2024, 75(S1): 195-205. |
[6] | Qirui GUO, Liyuan REN, Kang CHEN, Xiangyu HUANG, Weihua MA, Leqin XIAO, Weiliang ZHOU. Numerical simulation of static mixing tubes for HTPB propellant slurry [J]. CIESC Journal, 2024, 75(S1): 206-216. |
[7] | Kuangxi LI, Peiqian YU, Jiangyun WANG, Haoran WEI, Zhigang ZHENG, Liuhai FENG. Flow analysis and structure optimization of micro-bubble swirling air flotation device [J]. CIESC Journal, 2024, 75(S1): 223-234. |
[8] | Zhangzhou WANG, Tianqi TANG, Jiajun XIA, Yurong HE. Battery thermal management performance simulation based on composite phase change material [J]. CIESC Journal, 2024, 75(S1): 329-338. |
[9] | Jian HU, Jinghua JIANG, Shengjun FAN, Jianhao LIU, Haijiang ZOU, Wanlong CAI, Fenghao WANG. Research on heat extraction performance of deep U-type borehole heat exchanger [J]. CIESC Journal, 2024, 75(S1): 76-84. |
[10] | He ZHU, Yi ZHANG, Nana QI, Kai ZHANG. Effect of particle viscosity in two-fluid model on homogeneous liquid-solid fluidization under Euler-Euler framework [J]. CIESC Journal, 2024, 75(9): 3103-3112. |
[11] | Juhui CHEN, Tong SU, Dan LI, Liwei CHEN, Wensheng LYU, Fanqi MENG. Study on the heat transfer characteristics of microchannels under the action of fin-shaped spoilers [J]. CIESC Journal, 2024, 75(9): 3122-3132. |
[12] | Shuyue LI, Huan WANG, Shaoqiang ZHOU, Zhihong MAO, Yongmin ZHANG, Junwu WANG, Xiuhua WU. Numerical simulation of hydrogen reduction of U3O8 in fluidized bed reactors using CPFD method [J]. CIESC Journal, 2024, 75(9): 3133-3151. |
[13] | Xiaoyu QIAN, Xuan RUAN, Shuiqing LI. Structural reconstruction and levitation of dielectric particle layers in electric fields [J]. CIESC Journal, 2024, 75(8): 2756-2762. |
[14] | Ziliang ZHU, Shuang WANG, Yu'ang JIANG, Mei LIN, Qiuwang WANG. Solid-liquid phase change algorithm with Euler-Lagrange iteration [J]. CIESC Journal, 2024, 75(8): 2763-2776. |
[15] | Aiming DENG, Yurong HE, Tianqi TANG, Yanwei HU. Simulation of effect of draft plate on particle growth process in spray fluidized beds [J]. CIESC Journal, 2024, 75(8): 2787-2799. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 555
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 153
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||