CIESC Journal ›› 2025, Vol. 76 ›› Issue (2): 612-622.DOI: 10.11949/0438-1157.20240679
• Fluid dynamics and transport phenomena • Previous Articles
Yunlong HUANG1(), Jian XU2, Tong LIU2, Xintong YUAN1, Qiang XU1(
)
Received:
2024-06-18
Revised:
2024-09-17
Online:
2025-03-10
Published:
2025-03-25
Contact:
Qiang XU
通讯作者:
徐强
作者简介:
黄云龙(2000—),男,硕士研究生,yunl_h@163.com
基金资助:
CLC Number:
Yunlong HUANG, Jian XU, Tong LIU, Xintong YUAN, Qiang XU. Experimental study on temperature distribution characteristics and flow measurement of horizontal wells in gas reservoir[J]. CIESC Journal, 2025, 76(2): 612-622.
黄云龙, 许剑, 刘通, 元昕彤, 徐强. 气藏水平井温度分布特征及流量测试实验研究[J]. 化工学报, 2025, 76(2): 612-622.
测量参数 | 测量范围 | 测量精度 | 最大误差 | 最大不确定度 |
---|---|---|---|---|
压力 | 0~20 MPa | ±0.075% | 0.015 | 7.5% |
压差 | 0~2 MPa | ±0.075% | 0.002 | 0.2% |
温度 | 0~200℃ | ±0.25% | 0.5 | 12.5% |
气相流量 | 0~400 kg/h | ±0.5% | 1.8 | 20% |
液相流量 | 0~0.6 m3/h | ±1% | 0.002 | 12% |
Table 1 Experimental measurement parameter errors and uncertainties
测量参数 | 测量范围 | 测量精度 | 最大误差 | 最大不确定度 |
---|---|---|---|---|
压力 | 0~20 MPa | ±0.075% | 0.015 | 7.5% |
压差 | 0~2 MPa | ±0.075% | 0.002 | 0.2% |
温度 | 0~200℃ | ±0.25% | 0.5 | 12.5% |
气相流量 | 0~400 kg/h | ±0.5% | 1.8 | 20% |
液相流量 | 0~0.6 m3/h | ±1% | 0.002 | 12% |
Fig.10 The relationship between upstream differential temperature and downstream differential temperature after the flow difference between adjacent perforations is introduced
1 | 贾承造, 郑民, 张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2): 129-136. |
Jia C Z, Zheng M, Zhang Y F. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2): 129-136. | |
2 | 王国勇. 苏里格气田水平井整体开发技术优势与条件制约: 以苏53区块为例[J]. 特种油气藏, 2012, 19(1): 62-65, 138. |
Wang G Y. Technical advantages and limitations of integrated development of Sulige gas field with horizontal wells: a case study with Block Su53[J]. Special Oil & Gas Reservoirs, 2012, 19(1): 62-65, 138. | |
3 | 王永辉, 卢拥军, 李永平, 等. 非常规储层压裂改造技术进展及应用[J]. 石油学报, 2012, 33(S1): 149-158. |
Wang Y H, Lu Y J, Li Y P, et al. Progress and application of fracturing reconstruction technology in unconventional reservoirs[J]. Acta Petrolei Sinica, 2012, 33(S1): 149-158. | |
4 | 吴奇, 胥云, 刘玉章, 等. 美国页岩气体积改造技术现状及对我国的启示[J]. 石油钻采工艺, 2011, 33(2): 1-7. |
Wu Q, Xu Y, Liu Y Z, et al. The current situation of stimulated reservoir volume for shale in U.S. and its inspiration to China[J]. Oil Drilling & Production Technology, 2011, 33(2): 1-7. | |
5 | Shen W J, Ma T R, Zuo L, et al. Advances and prospects of supercritical CO2 for shale gas extraction and geological sequestration in gas shale reservoirs[J]. Energy & Fuels, 2024, 38(2): 789-805. |
6 | 朱世琰. 基于分布式光纤温度测试的水平井产出剖面解释理论研究[D]. 成都: 西南石油大学, 2016. |
Zhu S Y. Theoretical study on horizontal well production profile interpretation based on distributed optical fiber temperature measurement[D]. Chengdu: Southwest Petroleum University, 2016. | |
7 | 郭海敏, 刘军锋, 戴家才, 等. 水平井产出剖面解释模型及图版[J]. 中国科学(D辑: 地球科学), 2008, 38(S2): 146-150. |
Guo H M, Liu J F, Dai J C, et al. Interpretation model and chart of horizontal well production profile[J]. Scientia Sinica (Terrae), 2008, 38(S2): 146-150. | |
8 | 刘兴斌, 胡金海, 周家强, 等. 电导式相关流量测井仪在产出剖面测井中的应用[J]. 测井技术, 2004, 28(2): 138-140, 144. |
Liu X B, Hu J H, Zhou J Q, et al. Applicaion of conductance correlaion flowmeter logging tool in production profile measurements[J]. Well Logging Technology, 2004, 28(2): 138-140, 144. | |
9 | 韩易龙, 吴迪, 王海, 等. 水平井生产测井技术应用[J]. 测井技术, 2003, 27(4): 320-324, 355. |
Han Y L, Wu D, Wang H, et al. Application of horizontal well production profile logging technology[J]. Well Logging Technology, 2003, 27(4): 320-324, 355. | |
10 | 崔文昊, 高榕, 常莉静, 等. 井下存储式浮子流量计在水平井产液剖面测试中的应用[J]. 测井技术, 2017, 41(4): 458-461. |
Cui W H, Gao R, Chang L J, et al. Application of downhole memory float flowmeter to production fluid profile logging in horizontal wells[J]. Well Logging Technology, 2017, 41(4): 458-461. | |
11 | 吴世旗, 钟兴福, 刘兴斌, 等. 水平井产出剖面测井技术及应用[J]. 油气井测试, 2005, 14(2): 57-59, 77. |
Wu S Q, Zhong X F, Liu X B, et al. Tech of production profile logging in horizontal well and its application[J]. Well Testing, 2005, 14(2): 57-59, 77. | |
12 | 冯晓炜, 赵毅, 杨鹏, 等. 分布式光纤温度监测技术在压裂水平井产剖解释中的应用[J]. 油气藏评价与开发, 2021, 11(4): 542-549. |
Feng X W, Zhao Y, Yang P, et al. Application of distributed optical fiber temperature monitoring technology in production and profile interpretation of fractured horizontal wells[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(4): 542-549. | |
13 | 罗懿, 符伟兵, 樊丽丽. 基于温度压力的产出剖面测试方法研究与应用[J]. 江汉石油职工大学学报, 2020, 33(6): 44-46. |
Luo Y, Fu W B, Fan L L. Study and application of method for temperature- and pressure-based test of production profile[J]. Journal of Jianghan Petroleum University of Staff and Workers, 2020, 33(6): 44-46. | |
14 | Zhang S, Zhu D, Hill A D. Flow profile determination from inversion of distributed temperature measurements[C]//SPE Annual Technical Conference and Exhibition. Calgary, Alberta, Canada. SPE, 2019: D031S048R002. |
15 | Ramey H J. Wellbore heat transmission[J]. Journal of petroleum Technology, 1962, 14(4): 427-435. |
16 | Yoshioka K, Zhu D, Hill A D, et al. Interpretation of temperature and pressure profiles measured in multilateral wells equipped with intelligent completions(SPE94097)[C]//67th EAGE Conference & Exhibition. Madrid: European Association of Geoscientists & Engineers, 2005. |
17 | Yoshioka K, Zhu D, Hill A, et al. A comprehensive model of temperature behavior in a horizontal well[C]//Proceedings of SPE Annual Technical Conference and Exhibition. Dallas: Society of Petroleum Engineers, 2005. |
18 | Muradov K, Davies D. Novel analytical methods of temperature interpretation in horizontal wells[J]. SPE Journal, 2011, 16(3): 637-647. |
19 | Li Z Y, Zhu D. Predicting flow profile of horizontal well by downhole pressure and distributed-temperature data for waterdrive reservoir[J]. SPE Production & Operations, 2010, 25(3): 296-304. |
20 | Luo H W, Li H T, Zhou X J, et al. Modeling temperature behavior of multistage fractured horizontal well with two-phase flow in low-permeability gas reservoirs[J]. Journal of Petroleum Science and Engineering, 2019, 173: 1187-1209. |
21 | 李海涛, 罗红文, 向雨行, 等. DTS/DAS技术在水平井压裂监测中的应用现状与展望[J]. 新疆石油天然气, 2021, 17(4): 62-73. |
Li H T, Luo H W, Xiang Y X, et al. The application status and prospect of DTS/DAS in fracturing monitoring of horizontal wells[J]. Xinjiang Oil & Gas, 2021, 17(4): 62-73. | |
22 | Nowak T J. The estimation of water injection profiles from temperature surveys[J]. Journal of Petroleum Technology, 1953, 5(8): 203-212. |
23 | Yoshioka K, Zhu D, Hill A D, et al. Prediction of temperature changes caused by water or gas entry into a horizontal well[J]. SPE Production & Operations, 2007, 22(4): 425-433. |
24 | Luo H W, Li H T, Li Y H, et al. Investigation of temperature behavior for multi-fractured horizontal well in low-permeability gas reservoir[J]. International Journal of Heat and Mass Transfer, 2018, 127: 375-395. |
25 | 罗红文, 李海涛, 蒋贝贝, 等. 基于DTS数据反演的低渗气藏压裂水平井产出剖面解释新方法[J]. 天然气地球科学, 2019, 30(11): 1639-1645. |
Luo H W, Li H T, Jiang B B, et al. A novel method to interpret production profiles of fractured horizontal well in low-permeability gas reservoir by inversing DTS data[J]. Natural Gas Geoscience, 2019, 30(11): 1639-1645. | |
26 | Hashish R G, Zeidouni M. Injection profiling in horizontal wells using temperature warmback analysis[J]. Computational Geosciences, 2021, 25(1): 215-232. |
27 | Song W G, Jia N, Jiang Q Q. An interpretation model for the production profile on the same angle of a horizontal well trajectory[J]. Frontiers in Energy Research, 2020, 8: 203. |
28 | Crump J B, Conway M W. Effects of perforation-entry friction on bottomhole treating analysis[J]. Journal of Petroleum Technology, 1988, 40(8): 1041-1048. |
29 | Granger G. A series of enthalpy-entropy charts for natural gases[J]. Transactions of the AIME, 1945, 160(1): 65-76. |
30 | 李颖川, 胡顺渠, 郭春秋. 天然气节流温降机理模型[J]. 天然气工业, 2003, 23(3): 70-72, 5. |
Li Y C, Hu S Q, Guo C Q. Model of temperature drop mechanism when gas flowing through chokes[J]. Natural Gas Industry, 2003, 23(3): 70-72, 5. | |
31 | 毛伟, 张立德. 焦耳-汤姆逊系数计算方法研究[J]. 特种油气藏, 2002, 9(5): 44-46, 107. |
Mao W, Zhang L D. A method study for calculating Joule-Thompson coefficient[J]. Special Oil & Gas Reservoirs, 2002, 9(5): 44-46, 107. |
[1] | Han WANG, Chunying ZHU, Youguang MA, Taotao FU. Effect of inlet pressure and differential pressure on flow rate of gas conveying system [J]. CIESC Journal, 2025, 76(2): 596-611. |
[2] | Xiaoyu DAI, Qiang XU, Chenyu YANG, Xiaobin SU, Liejin GUO. Gas-liquid two-phase pressurization characteristics of multistage mixed-flow multiphase pump [J]. CIESC Journal, 2025, 76(2): 554-563. |
[3] | Liming PU, Gui WANG, Chunlai ZHENG, Ke WANG, Tenglong XIANG, Zhihong WANG. Optimization and analysis of natural gas liquefaction process in mixed fluid cascade [J]. CIESC Journal, 2024, 75(S1): 267-275. |
[4] | Yingyu XU, Guoqiang YANG, Jing PENG, Haining SUN, Zhibing ZHANG. Research on advanced oxidation treatment of coal chemical wastewater using microinterfaces [J]. CIESC Journal, 2024, 75(S1): 283-291. |
[5] | Dehui DU, Wei FENG, Jianghui ZHANG, Yanlong XIANG, Gaopan QIAO, Wei LI. Prediction model of flow boiling heat transfer in microfinned hydrophobic composite enhanced tube [J]. CIESC Journal, 2024, 75(S1): 95-107. |
[6] | Yuhao TANG, Yingying ZHANG, Zhiwei ZHAO, Mengyue LU, Feifei ZHANG, Xiaoqing WANG, Jiangfeng YANG. Ultra-microporous Sc/In-CPM-66A with low-polar pore surfaces for efficient separation of CH4/N2 [J]. CIESC Journal, 2024, 75(9): 3210-3220. |
[7] | Haoyu WANG, Yang YANG, Wenjie JING, Bin YANG, Yu TANG, Yi LIU. Study on characteristics of gas-liquid spiral annular flow under action by different swirlers [J]. CIESC Journal, 2024, 75(8): 2744-2755. |
[8] | Zhenghang LUO, Jingyu LI, Weixiong CHEN, Daotong CHONG, Junjie YAN. Numerical simulation of heat transfer characteristic and bubble force analysis of low flow rate vapor condensation under rolling motion [J]. CIESC Journal, 2024, 75(8): 2800-2811. |
[9] | Gang ZENG, Lin CHEN, Dong YANG, Haizhuan YUAN, Yanping HUANG. Visualization of local boundary thermal flow field of supercritical CO2 inside a rectangular channel [J]. CIESC Journal, 2024, 75(8): 2831-2839. |
[10] | Jiuzhe QU, Peng YANG, Xufei YANG, Wei ZHANG, Bo YU, Dongliang SUN, Xiaodong WANG. Experimental study on flow boiling in silicon-based microchannels with micropillar cluster arrays [J]. CIESC Journal, 2024, 75(8): 2840-2851. |
[11] | Mingjun YANG, Guangjun GONG, Jianan ZHENG, Yongchen SONG. Production characteristics and model of muddy hydrates with low permeability by depressurization [J]. CIESC Journal, 2024, 75(8): 2909-2916. |
[12] | Fangming LYU, Zhiming BAO, Bowen WANG, Kui JIAO. Investigation on impact of gas diffusion layer intrusion into channel on water management in fuel cell [J]. CIESC Journal, 2024, 75(8): 2929-2938. |
[13] | Peiqi LI, Xuejiao CHEN, Boxiang WU, Rongpei JIANG, Chao YANG, Zhaohui LIU. Experimental study on radiometric density measurements of petroleum-based and coal-based rocket kerosene at high-parameters [J]. CIESC Journal, 2024, 75(7): 2422-2432. |
[14] | Xinze LI, Shuangxing ZHANG, Honghai YANG, Wenjing DU. Experimental study on performance of new type of pulsating heat pipe for battery cooling [J]. CIESC Journal, 2024, 75(6): 2222-2232. |
[15] | Chaoyang GUAN, Guoqing HUANG, Yinan ZHANG, Hongxia CHEN, Xiaoze DU. Experimental study on enhancement of flow boiling through degassing with copper foam [J]. CIESC Journal, 2024, 75(5): 1765-1776. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 450
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 128
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||