CIESC Journal ›› 2024, Vol. 75 ›› Issue (S1): 267-275.DOI: 10.11949/0438-1157.20240448
• Energy and environmental engineering • Previous Articles Next Articles
Liming PU1(), Gui WANG1, Chunlai ZHENG1, Ke WANG1, Tenglong XIANG2, Zhihong WANG2(
)
Received:
2024-04-24
Revised:
2024-05-31
Online:
2024-12-17
Published:
2024-12-25
Contact:
Zhihong WANG
蒲黎明1(), 汪贵1, 郑春来1, 王科1, 向腾龙2, 王治红2(
)
通讯作者:
王治红
作者简介:
蒲黎明(1982—),高级工程师,puliming_sw@swpu.edu.cn
基金资助:
CLC Number:
Liming PU, Gui WANG, Chunlai ZHENG, Ke WANG, Tenglong XIANG, Zhihong WANG. Optimization and analysis of natural gas liquefaction process in mixed fluid cascade[J]. CIESC Journal, 2024, 75(S1): 267-275.
蒲黎明, 汪贵, 郑春来, 王科, 向腾龙, 王治红. 混合制冷级联天然气液化工艺优化及分析[J]. 化工学报, 2024, 75(S1): 267-275.
CH2 | C2H6 | C3H8 | iC4H10 | nC4H10 | N2 | H2+He |
---|---|---|---|---|---|---|
0.9481 | 0.0311 | 0.0085 | 0.0024 | 0.0017 | 0.0076 | 0.0006 |
Table 1 Natural gas composition(mole fraction)
CH2 | C2H6 | C3H8 | iC4H10 | nC4H10 | N2 | H2+He |
---|---|---|---|---|---|---|
0.9481 | 0.0311 | 0.0085 | 0.0024 | 0.0017 | 0.0076 | 0.0006 |
编号 | 气相分数 | 温度/℃ | 压力/MPa | 摩尔流量/(kmol/h) | 质量流量/(kg/h) | 质量焓/(kJ/kg) | 质量熵/(kJ/(kg·K)) | 质量有效能/(kJ/kg) |
---|---|---|---|---|---|---|---|---|
1 | 1.00 | 22.00 | 8.50 | 53740.43 | 910695.00 | -4535.77 | 8.50 | 620.46 |
2 | 1.00 | -35.35 | 7.98 | 53740.43 | 910695.00 | -4720.45 | 7.82 | 637.88 |
3 | 0.00 | -71.55 | 7.73 | 53740.43 | 910695.00 | -4952.25 | 6.77 | 721.49 |
4 | 0.00 | -155.00 | 5.18 | 41168.33 | 934825.83 | -3734.10 | 3.41 | 739.97 |
5 | 0.04 | -156.88 | 0.61 | 41168.33 | 934825.83 | -3734.10 | 3.48 | 720.48 |
6 | 0.00 | -159.29 | 0.20 | 51443.44 | 871752.12 | -5336.94 | 4.59 | 1008.16 |
7 | 1.00 | -159.29 | 0.20 | 2296.99 | 38942.88 | -4328.54 | 8.74 | 237.92 |
8 | 0.00 | -35.35 | 1.10 | 36717.32 | 1493609.51 | -2991.72 | 2.23 | 165.59 |
9 | 0.02 | -38.35 | 0.39 | 36717.32 | 1493609.51 | -2991.72 | 2.24 | 164.02 |
10 | 1.00 | 18.00 | 0.33 | 36717.32 | 1493609.51 | -2497.90 | 4.21 | 70.83 |
11 | 0.01 | 13.76 | 1.57 | 36717.32 | 1493609.51 | -2862.16 | 2.72 | 149.29 |
12 | 1.00 | 102.59 | 1.78 | 18358.66 | 746804.76 | -2364.32 | 4.30 | 177.36 |
13 | 1.00 | 102.59 | 1.78 | 18358.66 | 746804.76 | -2364.32 | 4.30 | 177.36 |
14 | 0.00 | 15.00 | 1.64 | 36717.32 | 1493609.51 | -2862.16 | 2.72 | 149.43 |
15 | 0.00 | -35.35 | 3.81 | 31557.60 | 952561.51 | -3373.16 | 3.75 | 298.71 |
16 | 0.00 | -71.55 | 3.49 | 31557.60 | 952561.51 | -3468.55 | 3.32 | 332.00 |
17 | 0.09 | -81.50 | 0.41 | 31557.60 | 952561.51 | -3468.55 | 3.35 | 321.07 |
18 | 1.00 | -41.33 | 3.44 | 31557.60 | 952561.51 | -2973.78 | 5.71 | 113.16 |
19 | 1.00 | 118.24 | 4.44 | 15778.80 | 476280.76 | -2731.08 | 5.87 | 308.13 |
20 | 1.00 | 118.24 | 4.44 | 15778.80 | 476280.76 | -2731.08 | 5.87 | 308.13 |
21 | 0.10 | 15.00 | 4.30 | 31557.60 | 952561.51 | -3180.07 | 4.47 | 276.64 |
22 | 0.11 | 14.62 | 4.25 | 31557.60 | 952561.51 | -3180.07 | 4.47 | 276.46 |
23 | 0.01 | -71.55 | 6.18 | 41168.33 | 934825.83 | -3492.25 | 4.93 | 529.36 |
24 | 0.00 | -156.00 | 5.18 | 41168.33 | 934825.83 | -3734.10 | 3.41 | 739.97 |
25 | 0.09 | -160.80 | 0.39 | 41168.33 | 934825.83 | -3734.10 | 3.49 | 716.69 |
26 | 1.00 | -74.54 | 0.35 | 41168.33 | 934825.83 | -3159.50 | 7.25 | 169.53 |
27 | 1.00 | 93.38 | 3.45 | 20584.16 | 467412.91 | -2883.56 | 7.45 | 386.71 |
28 | 1.00 | 93.38 | 3.45 | 20584.16 | 467412.91 | -2883.56 | 7.45 | 386.71 |
29 | 1.00 | 15.30 | 3.39 | 20584.16 | 467412.91 | -3046.81 | 6.95 | 370.95 |
30 | 1.00 | 15.30 | 3.39 | 20584.16 | 467412.91 | -3046.81 | 6.95 | 370.95 |
31 | 1.00 | 80.81 | 7.31 | 20584.16 | 467412.91 | -2944.79 | 7.03 | 451.15 |
32 | 1.00 | 80.81 | 7.31 | 20584.16 | 467412.91 | -2944.79 | 7.03 | 451.15 |
33 | 1.00 | 14.70 | 7.19 | 41168.33 | 934825.83 | -3105.54 | 6.53 | 439.16 |
34 | 0.57 | -35.35 | 6.79 | 41168.33 | 934825.83 | -3311.12 | 5.74 | 468.11 |
Table 2 Simulated flow strand thermodynamic data
编号 | 气相分数 | 温度/℃ | 压力/MPa | 摩尔流量/(kmol/h) | 质量流量/(kg/h) | 质量焓/(kJ/kg) | 质量熵/(kJ/(kg·K)) | 质量有效能/(kJ/kg) |
---|---|---|---|---|---|---|---|---|
1 | 1.00 | 22.00 | 8.50 | 53740.43 | 910695.00 | -4535.77 | 8.50 | 620.46 |
2 | 1.00 | -35.35 | 7.98 | 53740.43 | 910695.00 | -4720.45 | 7.82 | 637.88 |
3 | 0.00 | -71.55 | 7.73 | 53740.43 | 910695.00 | -4952.25 | 6.77 | 721.49 |
4 | 0.00 | -155.00 | 5.18 | 41168.33 | 934825.83 | -3734.10 | 3.41 | 739.97 |
5 | 0.04 | -156.88 | 0.61 | 41168.33 | 934825.83 | -3734.10 | 3.48 | 720.48 |
6 | 0.00 | -159.29 | 0.20 | 51443.44 | 871752.12 | -5336.94 | 4.59 | 1008.16 |
7 | 1.00 | -159.29 | 0.20 | 2296.99 | 38942.88 | -4328.54 | 8.74 | 237.92 |
8 | 0.00 | -35.35 | 1.10 | 36717.32 | 1493609.51 | -2991.72 | 2.23 | 165.59 |
9 | 0.02 | -38.35 | 0.39 | 36717.32 | 1493609.51 | -2991.72 | 2.24 | 164.02 |
10 | 1.00 | 18.00 | 0.33 | 36717.32 | 1493609.51 | -2497.90 | 4.21 | 70.83 |
11 | 0.01 | 13.76 | 1.57 | 36717.32 | 1493609.51 | -2862.16 | 2.72 | 149.29 |
12 | 1.00 | 102.59 | 1.78 | 18358.66 | 746804.76 | -2364.32 | 4.30 | 177.36 |
13 | 1.00 | 102.59 | 1.78 | 18358.66 | 746804.76 | -2364.32 | 4.30 | 177.36 |
14 | 0.00 | 15.00 | 1.64 | 36717.32 | 1493609.51 | -2862.16 | 2.72 | 149.43 |
15 | 0.00 | -35.35 | 3.81 | 31557.60 | 952561.51 | -3373.16 | 3.75 | 298.71 |
16 | 0.00 | -71.55 | 3.49 | 31557.60 | 952561.51 | -3468.55 | 3.32 | 332.00 |
17 | 0.09 | -81.50 | 0.41 | 31557.60 | 952561.51 | -3468.55 | 3.35 | 321.07 |
18 | 1.00 | -41.33 | 3.44 | 31557.60 | 952561.51 | -2973.78 | 5.71 | 113.16 |
19 | 1.00 | 118.24 | 4.44 | 15778.80 | 476280.76 | -2731.08 | 5.87 | 308.13 |
20 | 1.00 | 118.24 | 4.44 | 15778.80 | 476280.76 | -2731.08 | 5.87 | 308.13 |
21 | 0.10 | 15.00 | 4.30 | 31557.60 | 952561.51 | -3180.07 | 4.47 | 276.64 |
22 | 0.11 | 14.62 | 4.25 | 31557.60 | 952561.51 | -3180.07 | 4.47 | 276.46 |
23 | 0.01 | -71.55 | 6.18 | 41168.33 | 934825.83 | -3492.25 | 4.93 | 529.36 |
24 | 0.00 | -156.00 | 5.18 | 41168.33 | 934825.83 | -3734.10 | 3.41 | 739.97 |
25 | 0.09 | -160.80 | 0.39 | 41168.33 | 934825.83 | -3734.10 | 3.49 | 716.69 |
26 | 1.00 | -74.54 | 0.35 | 41168.33 | 934825.83 | -3159.50 | 7.25 | 169.53 |
27 | 1.00 | 93.38 | 3.45 | 20584.16 | 467412.91 | -2883.56 | 7.45 | 386.71 |
28 | 1.00 | 93.38 | 3.45 | 20584.16 | 467412.91 | -2883.56 | 7.45 | 386.71 |
29 | 1.00 | 15.30 | 3.39 | 20584.16 | 467412.91 | -3046.81 | 6.95 | 370.95 |
30 | 1.00 | 15.30 | 3.39 | 20584.16 | 467412.91 | -3046.81 | 6.95 | 370.95 |
31 | 1.00 | 80.81 | 7.31 | 20584.16 | 467412.91 | -2944.79 | 7.03 | 451.15 |
32 | 1.00 | 80.81 | 7.31 | 20584.16 | 467412.91 | -2944.79 | 7.03 | 451.15 |
33 | 1.00 | 14.70 | 7.19 | 41168.33 | 934825.83 | -3105.54 | 6.53 | 439.16 |
34 | 0.57 | -35.35 | 6.79 | 41168.33 | 934825.83 | -3311.12 | 5.74 | 468.11 |
关键/决策变量 | 单位 | 下限 | 上限 | |
---|---|---|---|---|
过冷循环 | 高压压力p31 | MPa | 6.00 | 8.50 |
制冷压力p25 | MPa | 0.20 | 0.60 | |
过冷温度T24 | ℃ | -140.00 | -160.00 | |
N2流率 | kmol/h | 5500 | 6200 | |
CH4流率 | kmol/h | 18000 | 25000 | |
C2H6流率 | kmol/h | 12000 | 18000 | |
液化循环 | 高压压力p19 | MPa | 4.00 | 5.00 |
制冷压力p17 | MPa | 0.20 | 0.60 | |
液化温度T16 | ℃ | -60.00 | -85.00 | |
CH4流率 | kmol/h | 4000 | 5000 | |
C2H6流率 | kmol/h | 20000 | 30000 | |
C3H8流率 | kmol/h | 3200 | 4500 | |
预冷循环 | 高压压力p12 | MPa | 1.50 | 2.50 |
制冷压力p9 | MPa | 0.20 | 0.60 | |
预冷温度T8 | ℃ | -27.00 | -40.00 | |
C2H6流率 | kmol/h | 15000 | 18000 | |
C3H8流率 | kmol/h | 12000 | 18000 | |
C4H10流率 | kmol/h | 6000 | 9000 |
Table 3 Lower and upper bounds of key/decision variables for the MFC process
关键/决策变量 | 单位 | 下限 | 上限 | |
---|---|---|---|---|
过冷循环 | 高压压力p31 | MPa | 6.00 | 8.50 |
制冷压力p25 | MPa | 0.20 | 0.60 | |
过冷温度T24 | ℃ | -140.00 | -160.00 | |
N2流率 | kmol/h | 5500 | 6200 | |
CH4流率 | kmol/h | 18000 | 25000 | |
C2H6流率 | kmol/h | 12000 | 18000 | |
液化循环 | 高压压力p19 | MPa | 4.00 | 5.00 |
制冷压力p17 | MPa | 0.20 | 0.60 | |
液化温度T16 | ℃ | -60.00 | -85.00 | |
CH4流率 | kmol/h | 4000 | 5000 | |
C2H6流率 | kmol/h | 20000 | 30000 | |
C3H8流率 | kmol/h | 3200 | 4500 | |
预冷循环 | 高压压力p12 | MPa | 1.50 | 2.50 |
制冷压力p9 | MPa | 0.20 | 0.60 | |
预冷温度T8 | ℃ | -27.00 | -40.00 | |
C2H6流率 | kmol/h | 15000 | 18000 | |
C3H8流率 | kmol/h | 12000 | 18000 | |
C4H10流率 | kmol/h | 6000 | 9000 |
关键参数 | 单位 | 优化前 | 优化后 | |
---|---|---|---|---|
过冷循环 | 高压压力p31 | MPa | 8.46 | 7.31 |
制冷压力p25 | MPa | 0.41 | 0.38 | |
过冷温度T24 | ℃ | -156.00 | -156.00 | |
过热温度T26 | ℃ | -69.93 | -74.54 | |
液化循环 | 高压压力p19 | MPa | 4.24 | 4.44 |
制冷压力p17 | MPa | 0.44 | 0.41 | |
液化温度T16 | ℃ | -65.50 | -71.55 | |
过热温度T18 | ℃ | -42.01 | -41.33 | |
预冷循环 | 高压压力p12 | MPa | 2.50 | 1.78 |
制冷压力p9 | MPa | 0.57 | 0.39 | |
预冷温度T8 | ℃ | -30.50 | -35.35 | |
过热温度T10 | ℃ | 11.96 | 18.00 |
Table 4 Comparison of key parameters of liquefaction process before and after optimization
关键参数 | 单位 | 优化前 | 优化后 | |
---|---|---|---|---|
过冷循环 | 高压压力p31 | MPa | 8.46 | 7.31 |
制冷压力p25 | MPa | 0.41 | 0.38 | |
过冷温度T24 | ℃ | -156.00 | -156.00 | |
过热温度T26 | ℃ | -69.93 | -74.54 | |
液化循环 | 高压压力p19 | MPa | 4.24 | 4.44 |
制冷压力p17 | MPa | 0.44 | 0.41 | |
液化温度T16 | ℃ | -65.50 | -71.55 | |
过热温度T18 | ℃ | -42.01 | -41.33 | |
预冷循环 | 高压压力p12 | MPa | 2.50 | 1.78 |
制冷压力p9 | MPa | 0.57 | 0.39 | |
预冷温度T8 | ℃ | -30.50 | -35.35 | |
过热温度T10 | ℃ | 11.96 | 18.00 |
冷剂组成及循环量 | 优化前 | 优化后 | |
---|---|---|---|
混合制冷剂MR1 | 循环量/(kmol/)h | 42457.92 | 36717.32 |
C2H6 | 0.648638 | 0.454331 | |
C3H8 | 0.183213 | 0.335035 | |
C4H10 | 0.168149 | 0.210633 | |
混合制冷剂MR2 | 循环量/(kmol/h) | 31114.37 | 31557.60 |
CH4 | 0.088813 | 0.128623 | |
C2H6 | 0.800945 | 0.739691 | |
C3H8 | 0.110242 | 0.131686 | |
混合制冷剂MR3 | 循环量/(kmol/h) | 47319.36 | 41168.33 |
N2 | 0.149387 | 0.142229 | |
CH4 | 0.479987 | 0.507300 | |
C2H6 | 0.370626 | 0.350471 |
Table 5 Optimized refrigerant blend composition (mole fraction) and flow rate
冷剂组成及循环量 | 优化前 | 优化后 | |
---|---|---|---|
混合制冷剂MR1 | 循环量/(kmol/)h | 42457.92 | 36717.32 |
C2H6 | 0.648638 | 0.454331 | |
C3H8 | 0.183213 | 0.335035 | |
C4H10 | 0.168149 | 0.210633 | |
混合制冷剂MR2 | 循环量/(kmol/h) | 31114.37 | 31557.60 |
CH4 | 0.088813 | 0.128623 | |
C2H6 | 0.800945 | 0.739691 | |
C3H8 | 0.110242 | 0.131686 | |
混合制冷剂MR3 | 循环量/(kmol/h) | 47319.36 | 41168.33 |
N2 | 0.149387 | 0.142229 | |
CH4 | 0.479987 | 0.507300 | |
C2H6 | 0.370626 | 0.350471 |
换热器优化变量 | 单位 | 优化前 | 优化后 | |
---|---|---|---|---|
比功耗 | 单位质量LNG | kJ/kg | 970.99 | 899.36 |
预冷换热器E-001 | 最小传热温差 | ℃ | 5.97 | 3.00 |
对数平均温差 | ℃ | 12.72 | 7.65 | |
液化换热器E-002 | 最小传热温差 | ℃ | 3.63 | 3.00 |
对数平均温差 | ℃ | 7.20 | 5.47 | |
过冷换热器E-003 | 最小传热温差 | ℃ | 3.20 | 3.00 |
对数平均温差 | ℃ | 5.87 | 4.95 |
Table 6 Process specific power consumption and heat exchanger performance index before and after optimization
换热器优化变量 | 单位 | 优化前 | 优化后 | |
---|---|---|---|---|
比功耗 | 单位质量LNG | kJ/kg | 970.99 | 899.36 |
预冷换热器E-001 | 最小传热温差 | ℃ | 5.97 | 3.00 |
对数平均温差 | ℃ | 12.72 | 7.65 | |
液化换热器E-002 | 最小传热温差 | ℃ | 3.63 | 3.00 |
对数平均温差 | ℃ | 7.20 | 5.47 | |
过冷换热器E-003 | 最小传热温差 | ℃ | 3.20 | 3.00 |
对数平均温差 | ℃ | 5.87 | 4.95 |
单元系统 | 功耗/kW | 物流 | 有效能/kW | ||
---|---|---|---|---|---|
优化前 | 优化后 | 优化前 | 优化后 | ||
合计 | 235128.70 | 217782.94 | 有效能效率/% | 38.17 | 41.21 |
预冷循环 | 58356.77 | 55419.98 | 天然气进 | 156957.83 | 156957.83 |
液化循环 | 59123.69 | 64217.44 | LNG离开 | 246703.67 | 246703.67 |
过冷循环 | 117648.24 | 98145.52 | 有效能变化 | 89745.84 | 89745.84 |
Table 7 Power consumption and effective energy of MFC liquefaction process before and after optimization
单元系统 | 功耗/kW | 物流 | 有效能/kW | ||
---|---|---|---|---|---|
优化前 | 优化后 | 优化前 | 优化后 | ||
合计 | 235128.70 | 217782.94 | 有效能效率/% | 38.17 | 41.21 |
预冷循环 | 58356.77 | 55419.98 | 天然气进 | 156957.83 | 156957.83 |
液化循环 | 59123.69 | 64217.44 | LNG离开 | 246703.67 | 246703.67 |
过冷循环 | 117648.24 | 98145.52 | 有效能变化 | 89745.84 | 89745.84 |
参数 | 单位 | 优化前 | 优化后 | 差值 | 变化率 | 升或降 |
---|---|---|---|---|---|---|
总资本 | USD | 164272000 | 166297000 | 2025000 | 1.2327% | 上升 |
公用工程 | USD/a | 172323000 | 165778000 | -6545000 | 3.7981% | 下降 |
总运行成本 | USD/a | 195599000 | 188585000 | -7014000 | 3.5859% | 下降 |
总设备成本 | USD | 166219800 | 168788900 | 2569100 | 1.5456% | 上升 |
总安装成本 | USD | 184817700 | 187397200 | 2579500 | 1.3957% | 上升 |
总投资成本 | USD | 515309500 | 522483100 | 7173600 | 1.3921% | 上升 |
总生产成本 | USD/a | 367922000 | 354363000 | -13559000 | 3.6853% | 下降 |
Table 8 Economic analysis of MFC liquefaction process before and after optimization
参数 | 单位 | 优化前 | 优化后 | 差值 | 变化率 | 升或降 |
---|---|---|---|---|---|---|
总资本 | USD | 164272000 | 166297000 | 2025000 | 1.2327% | 上升 |
公用工程 | USD/a | 172323000 | 165778000 | -6545000 | 3.7981% | 下降 |
总运行成本 | USD/a | 195599000 | 188585000 | -7014000 | 3.5859% | 下降 |
总设备成本 | USD | 166219800 | 168788900 | 2569100 | 1.5456% | 上升 |
总安装成本 | USD | 184817700 | 187397200 | 2579500 | 1.3957% | 上升 |
总投资成本 | USD | 515309500 | 522483100 | 7173600 | 1.3921% | 上升 |
总生产成本 | USD/a | 367922000 | 354363000 | -13559000 | 3.6853% | 下降 |
参数 | 单位 | 优化前 | 优化后 | 差值 | 变化率 | 升或降 |
---|---|---|---|---|---|---|
冷公用工程 | kW | 4.269×105 | 4.095×105 | -1.740×104 | 4.076% | 下降 |
CO2排放 | kg/h | 1.718×105 | 1.648×105 | -0.700×104 | 4.075% | 下降 |
Table 9 Analysis of CO2 emissions before and after optimization
参数 | 单位 | 优化前 | 优化后 | 差值 | 变化率 | 升或降 |
---|---|---|---|---|---|---|
冷公用工程 | kW | 4.269×105 | 4.095×105 | -1.740×104 | 4.076% | 下降 |
CO2排放 | kg/h | 1.718×105 | 1.648×105 | -0.700×104 | 4.075% | 下降 |
1 | Howarth R W, Santoro R, Ingraffea A. Methane and the greenhouse-gas footprint of natural gas from shale formations[J]. Climatic Change, 2011, 106(4): 679-690. |
2 | Feser J S, Bassioni G, Gupta A K. Effect of naphthalene addition to ethanol in distributed combustion[J]. Applied Energy, 2018, 216: 1-7. |
3 | plc Shell. Shell LNG outlook 2024[R]. https://www.shell.com/energy-and-innovation/natural-gas/natural-gas-news-and-publications.html. |
4 | Revel D. BP statistical review of world energy [R]. http://www.bp.com/en/global/corporate/about-bp/energy-economics/statistical-review-of-world-energy.html. |
5 | Dudley B. BP statistical review of world energy[R]. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html. |
6 | GU. International gas union world LNG report 2017[R]. http://www.igu.org/news/igu-releases-2017-world-lng-report. |
7 | Wood D A. A review and outlook for the global LNG trade[J]. Journal of Natural Gas Science and Engineering, 2012, 9: 6-27. |
8 | 范峥, 姬盼盼, 林亮, 等. 天然气液化工艺系统模拟与节能优化[J]. 现代化工, 2018, 38(9): 219-223. |
Fan Z, Ji P P, Lin L, et al. System simulation and energy saving optimization of natural gas liquefaction process[J]. Modern Chemical Industry, 2018, 38(9): 219-223. | |
9 | 林畅, 白改玲, 王红, 等. 大型天然气液化技术与装置建设现状与发展[J]. 化工进展, 2014, 33(11): 2916-2922. |
Lin C, Bai G L, Wang H, et al. Development and trend of liquefaction technology and construction of large-scale natural gas liquefaction plant[J]. Chemical Industry and Engineering Progress, 2014, 33(11): 2916-2922. | |
10 | Qyyum M A, Qadeer K, Lee S, et al. Innovative propane-nitrogen two-phase expander refrigeration cycle for energy-efficient and low-global warming potential LNG production[J]. Applied Thermal Engineering, 2018, 139: 157-165. |
11 | Moein P, Sarmad M, Ebrahimi H, et al. APCI-LNG single mixed refrigerant process for natural gas liquefaction cycle: analysis and optimization[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 470-479. |
12 | Khan M S, Karimi I A, Lee M. Evolution and optimization of the dual mixed refrigerant process of natural gas liquefaction[J]. Applied Thermal Engineering, 2016, 96: 320-329. |
13 | Primabudi E, Morosuk T, Tsatsaronis G. Multi-objective optimization of propane pre-cooled mixed refrigerant (C3MR) LNG process[J]. Energy, 2019, 185: 492-504. |
14 | Khan M S, Lee M. Design optimization of single mixed refrigerant natural gas liquefaction process using the particle swarm paradigm with nonlinear constraints[J]. Energy, 2013, 49: 146-155. |
15 | Ghorbani B, Mafi M, Shirmohammadi R, et al. Optimization of operation parameters of refrigeration cycle using particle swarm and NLP techniques[J]. Journal of Natural Gas Science and Engineering, 2014, 21: 779-790. |
16 | Hwang J H, Roh M I, Lee K Y. Determination of the optimal operating conditions of the dual mixed refrigerant cycle for the LNG FPSO topside liquefaction process[J]. Computers & Chemical Engineering, 2013, 49: 25-36. |
17 | Zhang J R, Meerman H, Benders R, et al. Technical and economic optimization of expander-based small-scale natural gas liquefaction processes with absorption precooling cycle[J]. Energy, 2020, 191: 116592. |
18 | AspenTech. Aspen Plus: getting started using equation oriented modeling, version number: V8.4[Z]. 2013. |
19 | Javaloyes- Antón J, Kronqvist J, Caballero J A. Simulation-based optimization of distillation processes using an extended cutting plane algorithm[J]. Computers & Chemical Engineering, 2022, 159: 107655. |
20 | Vikse M, Watson H A J, Kim D, et al. Optimization of a dual mixed refrigerant process using a nonsmooth approach[J]. Energy, 2020, 196: 116999. |
21 | Kamath R S, Biegler L T, Grossmann I E. An equation-oriented approach for handling thermodynamics based on cubic equation of state in process optimization[J]. Computers & Chemical Engineering, 2010, 34(12): 2085-2096. |
22 | Watson H A J, Khan K A, Barton P I. Multistream heat exchanger modeling and design[J]. AIChE Journal, 2015,61(10): 3390-3403. |
23 | Matovu F, Mahadzir S, Ahmed R, et al. Synthesis and optimization of multilevel refrigeration systems using generalized disjunctive programming[J]. Computers & Chemical Engineering, 2022, 163: 107856. |
24 | Wang M Q, Zhang J, Xu Q. Optimal design and operation of a C3MR refrigeration system for natural gas liquefaction[J]. Computers & Chemical Engineering, 2012, 39: 84-95. |
25 | Lee G C, Smith R, Zhu X X. Optimal synthesis of mixed-refrigerant systems for low-temperature processes[J]. Industrial & Engineering Chemistry Research, 2002, 41(20): 5016-5028. |
26 | 郭揆常. 液化天然气(LNG)工艺与工程[M]. 北京: 中国石化出版社, 2014: 103. |
Guo K C. Liquefied Natural Gas (LNG) Technology and Engineering[M]. Beijing: China Petrochemical Press, 2014: 103. | |
27 | Peng D Y, Robinson D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64. |
28 | Nawaz A, Qyyum M A, Qadeer K, et al. Optimization of mixed fluid cascade LNG process using a multivariate Coggins step-up approach: overall compression power reduction and exergy loss analysis[J]. International Journal of Refrigeration, 2019, 104: 189-200. |
29 | 丁贺, 孙恒, 何明, 等. MFC液化流程的分析和优化[J]. 低温与超导, 2015, 43(9): 1-5. |
Ding H, Sun H, He M, et al. Analysis and optimization of mixed fluid cascade (MFC) process[J]. Cryogenics & Superconductivity, 2015, 43(9): 1-5. | |
30 | 尹全森, 李红艳, 季中敏, 等. 混合制冷剂循环的级数对制冷性能的影响[J]. 化工学报, 2009, 60(11): 2689-2693. |
Yin Q S, Li H Y, Ji Z M, et al. Effect of number of stages of mixed refrigerant cycle on refrigeration performance[J]. CIESC Journal, 2009, 60(11): 2689-2693. |
[1] | Junfeng WANG, Junjie ZHANG, Wei ZHANG, Jiale WANG, Shuyan SHUANG, Yadong ZHANG. Liquid-phase discharge plasma decomposition of methanol for hydrogen production: optimization of electrode configuration [J]. CIESC Journal, 2024, 75(9): 3277-3286. |
[2] | Ziyang LI, Nan ZHENG, Jiabin FANG, Jinjia WEI. Performance analysis and multi-objective optimization of recompression S-CO2 Brayton cycle [J]. CIESC Journal, 2024, 75(6): 2143-2156. |
[3] | Rufeng XU, Yucheng CHEN, Dan GAO, Jingyu JIAO, Dong GAO, Haibin WANG, Shanjing YAO, Dongqiang LIN. Model-assisted process optimization of ion-exchange chromatography for monoclonal antibody charge variant separation [J]. CIESC Journal, 2024, 75(5): 1903-1911. |
[4] | Yujiao ZENG, Xin XIAO, Gang YANG, Yibo ZHANG, Guangming ZHENG, Fang LI, Fengling WANG. Surrogate modeling and optimization of wet phosphoric acid production process based on mechanism and data hybrid driven [J]. CIESC Journal, 2024, 75(3): 936-944. |
[5] | Lingxian ZHANG, Bin LIU, Lin DENG, Yuhang REN. PEMFC fault diagnosis based on improved TSO optimized Xception [J]. CIESC Journal, 2024, 75(3): 945-955. |
[6] | Jiapeng YU, Na XU, Wei ZHANG, Qingyuan KANG, Hong ZHANG, Muxuan QIN, Jiabin FANG. Modeling and multi-objective optimization of yield and energy consumption of gas-liquid sulfonation reaction in microreactor [J]. CIESC Journal, 2024, 75(10): 3681-3690. |
[7] | Yang YU, Yiqing LUO, Ronghui WEI, Wenhui ZHANG, Xigang YUAN. A resilient supply chain design method considering node disruption risk [J]. CIESC Journal, 2024, 75(1): 338-353. |
[8] | Xin YANG, Wen WANG, Kai XU, Fanhua MA. Simulation analysis of temperature characteristics of the high-pressure hydrogen refueling process [J]. CIESC Journal, 2023, 74(S1): 280-286. |
[9] | Song HE, Qiaomai LIU, Guangshuo XIE, Simin WANG, Juan XIAO. Two-phase flow simulation and surrogate-assisted optimization of gas film drag reduction in high-concentration coal-water slurry pipeline [J]. CIESC Journal, 2023, 74(9): 3766-3774. |
[10] | Lei XING, Chunyu MIAO, Minghu JIANG, Lixin ZHAO, Xinya LI. Optimal design and performance analysis of downhole micro gas-liquid hydrocyclone [J]. CIESC Journal, 2023, 74(8): 3394-3406. |
[11] | Manzheng ZHANG, Meng XIAO, Peiwei YAN, Zheng MIAO, Jinliang XU, Xianbing JI. Working fluid screening and thermodynamic optimization of hazardous waste incineration coupled organic Rankine cycle system [J]. CIESC Journal, 2023, 74(8): 3502-3512. |
[12] | Chengying ZHU, Zhenlei WANG. Operation optimization of ethylene cracking furnace based on improved deep reinforcement learning algorithm [J]. CIESC Journal, 2023, 74(8): 3429-3437. |
[13] | Guoze CHEN, Dong WEI, Qian GUO, Zhiping XIANG. Optimal power point optimization method for aluminum-air batteries under load tracking condition [J]. CIESC Journal, 2023, 74(8): 3533-3542. |
[14] | Wenzhu LIU, Heming YUN, Baoxue WANG, Mingzhe HU, Chonglong ZHONG. Research on topology optimization of microchannel based on field synergy and entransy dissipation [J]. CIESC Journal, 2023, 74(8): 3329-3341. |
[15] | Wentao WU, Liangyong CHU, Lingjie ZHANG, Weimin TAN, Liming SHEN, Ningzhong BAO. High-efficient preparation of cardanol-based self-healing microcapsules [J]. CIESC Journal, 2023, 74(7): 3103-3115. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 35
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 106
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||