CIESC Journal ›› 2024, Vol. 75 ›› Issue (8): 2840-2851.DOI: 10.11949/0438-1157.20240234
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Jiuzhe QU1(), Peng YANG2, Xufei YANG3, Wei ZHANG3(), Bo YU3, Dongliang SUN3, Xiaodong WANG1
Received:
2024-03-01
Revised:
2024-04-26
Online:
2024-08-21
Published:
2024-08-25
Contact:
Wei ZHANG
曲玖哲1(), 杨鹏2, 杨绪飞3, 张伟3(), 宇波3, 孙东亮3, 王晓东1
通讯作者:
张伟
作者简介:
曲玖哲(1995—),男,博士研究生,qujiuzhe@163.com
基金资助:
CLC Number:
Jiuzhe QU, Peng YANG, Xufei YANG, Wei ZHANG, Bo YU, Dongliang SUN, Xiaodong WANG. Experimental study on flow boiling in silicon-based microchannels with micropillar cluster arrays[J]. CIESC Journal, 2024, 75(8): 2840-2851.
曲玖哲, 杨鹏, 杨绪飞, 张伟, 宇波, 孙东亮, 王晓东. 硅基微柱簇阵列微通道流动沸腾实验研究[J]. 化工学报, 2024, 75(8): 2840-2851.
工质 | 质量流速 /(kg·m-2·s-1) | 热通量 /(kW·m-2) | 入口温度/℃ | 芯片类型 |
---|---|---|---|---|
丙酮 | 43 | 200~650 | 40 ± 3 | 并联微通道(PMC) 稀疏微柱簇微通道(SPFMC) 致密微柱簇微通道(DPFMC) |
Table 1 Experimental conditions for flow boiling in microchannels of silicon-based micropillar cluster arrays
工质 | 质量流速 /(kg·m-2·s-1) | 热通量 /(kW·m-2) | 入口温度/℃ | 芯片类型 |
---|---|---|---|---|
丙酮 | 43 | 200~650 | 40 ± 3 | 并联微通道(PMC) 稀疏微柱簇微通道(SPFMC) 致密微柱簇微通道(DPFMC) |
主要结构参数 | 并联 微通道 | 稀疏微柱簇 微通道 | 致密微柱簇 微通道 |
---|---|---|---|
固液接触面积 /m2 | 5.95×10-5 | 1.03×10-4 | 9.50×10-5 |
投影面积 /m2 | 2.88×10-5 | 4.50×10-5 | 4.52×10-5 |
最大流通截面积 /m2 | 1.92×10-7 | 3.12×10-7 | 3.12×10-7 |
微柱簇阵列分布 | — | 23(列)×8(行) | 34(列)×11(行) |
微柱簇的微柱数量 /根 | 0 | 125 | 53 |
芯片微柱总数 /根 | 0 | 23000 | 19822 |
湿周 /m | 4.96×10-3 | 4.06×10-3 | 4.06×10-3 |
当量直径 /m | 2.61×10-5 | 3.92×10-5 | 3.92×10-5 |
Table 2 Main structural parameters of the experimental silicon-based chip
主要结构参数 | 并联 微通道 | 稀疏微柱簇 微通道 | 致密微柱簇 微通道 |
---|---|---|---|
固液接触面积 /m2 | 5.95×10-5 | 1.03×10-4 | 9.50×10-5 |
投影面积 /m2 | 2.88×10-5 | 4.50×10-5 | 4.52×10-5 |
最大流通截面积 /m2 | 1.92×10-7 | 3.12×10-7 | 3.12×10-7 |
微柱簇阵列分布 | — | 23(列)×8(行) | 34(列)×11(行) |
微柱簇的微柱数量 /根 | 0 | 125 | 53 |
芯片微柱总数 /根 | 0 | 23000 | 19822 |
湿周 /m | 4.96×10-3 | 4.06×10-3 | 4.06×10-3 |
当量直径 /m | 2.61×10-5 | 3.92×10-5 | 3.92×10-5 |
直接测量参数 | 不确定度 | 计算参数 | 不确定度 |
---|---|---|---|
硅基芯片加工尺寸 | ± 10 nm | 质量流速 | ± 5.0% |
热电偶温度 | ± 0.41℃ | 热通量 | ± 5.4% |
红外温度值 | ± 0.2℃(校准后) | 传热系数 | ± 1.6% |
加热电压 | 读数值的 ± 0.02% | ||
压力(量程:0~500 kPa) | 满量程的 ± 0.055% | ||
压差(量程:0~5 kPa) | 满量程的 ± 0.055% | ||
质量流量(量程:0~9 kg·s-1) | 满量程的 ± 0.2% |
Table 3 The relative uncertainties of the measured and calculated parameters
直接测量参数 | 不确定度 | 计算参数 | 不确定度 |
---|---|---|---|
硅基芯片加工尺寸 | ± 10 nm | 质量流速 | ± 5.0% |
热电偶温度 | ± 0.41℃ | 热通量 | ± 5.4% |
红外温度值 | ± 0.2℃(校准后) | 传热系数 | ± 1.6% |
加热电压 | 读数值的 ± 0.02% | ||
压力(量程:0~500 kPa) | 满量程的 ± 0.055% | ||
压差(量程:0~5 kPa) | 满量程的 ± 0.055% | ||
质量流量(量程:0~9 kg·s-1) | 满量程的 ± 0.2% |
1 | Moore G E. Cramming more components onto integrated circuits[J]. Proceedings of the IEEE, 1998, 86(1): 82-85. |
2 | Ye P D, Ernst T, Khare M V. The last silicon transistor: nanosheet devices could be the final evolutionary step for Moore's law[J]. IEEE Spectrum, 2019, 56(8): 30-35. |
3 | Herwig H. High heat flux cooling of electronics: the need for a paradigm shift[J]. Journal of heat transfer, 2013, 135(11): 111011-111013. |
4 | Mudawar I. Recent advances in high-flux, two-phase thermal management[J]. Journal of Thermal Science and Engineering Applications, 2013, 5(2): 021012. |
5 | 汤志轩, 郭文华, 吴思远, 等. 微通道蒸发器优化两相制冷剂分配及沸腾传热研究进展[J]. 化工学报, 2023, 74(10): 4020-4036. |
Tang Z X, Guo W H, Wu S Y, et al. Research progress on optimizing two-phase refrigerant distribution and boiling heat transfer in microchannel evaporators[J]. CIESC Journal, 2023, 74(10): 4020-4036. | |
6 | Deng D X, Zeng L, Sun W. A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks[J]. International Journal of Heat and Mass Transfer, 2021, 175: 121332. |
7 | 徐健, 张东辉, 黄俊, 等. 结构参数对烧结微通道流动沸腾性能的影响[J]. 化工学报, 2023, 74(11): 4548-4558. |
Xu J, Zhang D H, Huang J, et al. Effect of structural parameters on flow boiling performance of sintered microchannels[J]. CIESC Journal, 2023, 74(11): 4548-4558. | |
8 | Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. |
9 | Lee J, Mudawar I. Low-temperature two-phase microchannel cooling for high-heat-flux thermal management of defense electronics[J]. IEEE Transactions on Components and Packaging Technologies, 2009, 32(2): 453-465. |
10 | Deng D X, Xie Y L, Chen L, et al. Experimental investigation on thermal and combustion performance of a combustor with microchannel cooling[J]. Energy, 2019, 181: 954-963. |
11 | Gilmore N, Timchenko V, Menictas C. Microchannel cooling of concentrator photovoltaics: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 1041-1059. |
12 | Deng D X, Wan W, Shao H R, et al. Effects of operation parameters on flow boiling characteristics of heat sink cooling systems with reentrant porous microchannels[J]. Energy Conversion and Management, 2015, 96: 340-351. |
13 | Fang Y D, Yang W L, Xu D, et al. Experimental investigation on flow boiling characteristics of R1233zd(E) in a parallel mini-channel heat sink for the application in battery thermal management[J]. International Journal of Heat and Mass Transfer, 2021, 178: 121591. |
14 | Kingston T A, Weibel J A, Garimella S V. Ledinegg instability-induced temperature excursion between thermally isolated, heated parallel microchannels[J]. International Journal of Heat and Mass Transfer, 2019, 132: 550-556. |
15 | Mohammed Adham A, Mohd-Ghazali N, Ahmad R. Thermal and hydrodynamic analysis of microchannel heat sinks: a review[J]. Renewable and Sustainable Energy Reviews, 2013, 21: 614-622. |
16 | Zhang X L, Ji Z, Wang J F, et al. Research progress on structural optimization design of microchannel heat sinks applied to electronic devices[J]. Applied Thermal Engineering, 2023, 235: 121294. |
17 | Ma X, Ji X Y, Wang J Y, et al. Flow boiling heat transfer characteristics on micro-pin-finned surfaces in a horizontal narrow microchannel[J]. International Journal of Heat and Mass Transfer, 2022, 194: 123071. |
18 | Xu J L, Yu X J, Jin W. Porous-wall microchannels generate high frequency“eye-blinking”interface oscillation, yielding ultra-stable wall temperatures[J]. International Journal of Heat and Mass Transfer, 2016, 101: 341-353. |
19 | Zong L X, Xia G D, Jia Y T, et al. Flow boiling instability characteristics in microchannels with porous-wall[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118863. |
20 | Jia Y T, Xia G D, Zong L X, et al. A comparative study of experimental flow boiling heat transfer and pressure drop characteristics in porous-wall microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2018, 127: 818-833. |
21 | Ma A X, Wei J J, Yuan M Z, et al. Enhanced flow boiling heat transfer of FC-72 on micro-pin-finned surfaces[J]. International Journal of Heat and Mass Transfer, 2009, 52(13/14): 2925-2931. |
22 | Law M, Lee P S. A comparative study of experimental flow boiling heat transfer and pressure characteristics in straight- and oblique-finned microchannels[J]. International Journal of Heat and Mass Transfer, 2015, 85: 797-810. |
23 | Koşar A, Peles Y. Boiling heat transfer in a hydrofoil-based micro pin fin heat sink[J]. International Journal of Heat and Mass Transfer, 2007, 50(5/6): 1018-1034. |
24 | Reeser A, Bar-Cohen A, Hetsroni G. High quality flow boiling heat transfer and pressure drop in microgap pin fin arrays[J]. International Journal of Heat and Mass Transfer, 2014, 78: 974-985. |
25 | Wan W, Deng D X, Huang Q S, et al. Experimental study and optimization of pin fin shapes in flow boiling of micro pin fin heat sinks[J]. Applied Thermal Engineering, 2017, 114: 436-449. |
26 | Xu J L, Liu G H, Zhang W, et al. Seed bubbles stabilize flow and heat transfer in parallel microchannels[J]. International Journal of Multiphase Flow, 2009, 35(8): 773-790. |
27 | 滕文强. 单管中R32的沸腾数值模拟与实验研究[D]. 上海: 上海海洋大学, 2021. |
Teng W Q. Numerical simulation and experimental study of R32 boiling in a single tube[D]. Shanghai: Shanghai Ocean University, 2021. | |
28 | Moffat R J. Describing the uncertainties in experimental results[J]. Experimental Thermal and Fluid Science, 1988, 1(1): 3-17. |
29 | Qu W L, Mudawar I. Prediction and measurement of incipient boiling heat flux in micro-channel heat sinks[J]. International Journal of Heat and Mass Transfer, 2002, 45(19): 3933-3945. |
30 | Li J, Cheng P. Bubble cavitation in a microchannel[J]. International Journal of Heat and Mass Transfer, 2004, 47(12/13): 2689-2698. |
31 | Wu H Y, Cheng P. Three boiling instability modes in silicon microchannels[C]//ASME 2003 Heat Transfer Summer Conference. Las Vegas, Nevada, USA, 2008: 631-637. |
32 | Lin L W. Microscale thermal bubble formation: thermophysical phenomena and applications[J]. Microscale Thermophysical Engineering, 1998, 2(2): 71-85. |
[1] | Haoyu WANG, Yang YANG, Wenjie JING, Bin YANG, Yu TANG, Yi LIU. Study on characteristics of gas-liquid spiral annular flow under action by different swirlers [J]. CIESC Journal, 2024, 75(8): 2744-2755. |
[2] | Ziliang ZHU, Shuang WANG, Yu'ang JIANG, Mei LIN, Qiuwang WANG. Solid-liquid phase change algorithm with Euler-Lagrange iteration [J]. CIESC Journal, 2024, 75(8): 2763-2776. |
[3] | Zhenghang LUO, Jingyu LI, Weixiong CHEN, Daotong CHONG, Junjie YAN. Numerical simulation of heat transfer characteristic and bubble force analysis of low flow rate vapor condensation under rolling motion [J]. CIESC Journal, 2024, 75(8): 2800-2811. |
[4] | Fangming LYU, Zhiming BAO, Bowen WANG, Kui JIAO. Investigation on impact of gas diffusion layer intrusion into channel on water management in fuel cell [J]. CIESC Journal, 2024, 75(8): 2929-2938. |
[5] | Lichang FANG, Zilong LI, Bo CHEN, Zheng SU, Lisi JIA, Zhibin WANG, Ying CHEN. Study on cooling characteristics of chip array based on microencapsulated phase change material slurry [J]. CIESC Journal, 2024, 75(7): 2455-2464. |
[6] | Kehao DONG, Jingzhi ZHOU, Feng ZHOU, Haijia CHEN, Xiulan HUAI, Dong LI. Experiment of gas flow pressure drop under complex boundary conditions in ultra-thin space [J]. CIESC Journal, 2024, 75(7): 2505-2521. |
[7] | He ZHAO, Yingjie FEI, Chunying ZHU, Taotao FU, Youguang MA. Deformation and breakup behavior of nanoparticle-stabilized bubbles in high-viscosity systems [J]. CIESC Journal, 2024, 75(6): 2180-2189. |
[8] | Xinze LI, Shuangxing ZHANG, Honghai YANG, Wenjing DU. Experimental study on performance of new type of pulsating heat pipe for battery cooling [J]. CIESC Journal, 2024, 75(6): 2222-2232. |
[9] | Yuhui SHI, Jiyuan XING, Xuehan JIANG, Shuang YE, Weiguang HUANG. Numerical simulation of bubble breakup and coalescence in centrifugal impeller based on PBM [J]. CIESC Journal, 2024, 75(5): 1816-1829. |
[10] | Yifei LI, Xinyu DONG, Weishu WANG, Lu LIU, Yifan ZHAO. Numerical study on heat transfer of dry ice sublimation spray cooling on the surface of micro-ribbed plate [J]. CIESC Journal, 2024, 75(5): 1830-1842. |
[11] | Fan LIU, Yuantong ZHANG, Cheng TAO, Chengyu HU, Xiaoping YANG, Jinjia WEI. Performance of manifold microchannel liquid cooling [J]. CIESC Journal, 2024, 75(5): 1777-1786. |
[12] | Chaoyang GUAN, Guoqing HUANG, Yinan ZHANG, Hongxia CHEN, Xiaoze DU. Experimental study on enhancement of flow boiling through degassing with copper foam [J]. CIESC Journal, 2024, 75(5): 1765-1776. |
[13] | Sirui CHEN, Jingliang BI, Lei WANG, Yuanyuan LI, Gui LU. Unsupervised-feature extraction of gas-liquid two-phase flow pattern based on convolutional autoencoder: principle and application [J]. CIESC Journal, 2024, 75(3): 847-857. |
[14] | Changhui LIU, Tong XIAO, Qingyi LIU, Long GENG, Jiateng ZHAO. Investigation of the thermal storage mechanism of porous TiO2 enhanced phase change materials [J]. CIESC Journal, 2024, 75(2): 706-714. |
[15] | Zhipeng LIU, Changying ZHAO, Rui WU, Zhihao ZHANG. Experimental study of gas-liquid flow visualization in gradient porous transport layers based on hydrogen production by water electrolysis [J]. CIESC Journal, 2024, 75(2): 520-530. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 138
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 134
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||