CIESC Journal ›› 2024, Vol. 75 ›› Issue (S1): 283-291.DOI: 10.11949/0438-1157.20240462
• Energy and environmental engineering • Previous Articles Next Articles
Yingyu XU1(), Guoqiang YANG1(
), Jing PENG1,2, Haining SUN1, Zhibing ZHANG1
Received:
2024-04-26
Revised:
2024-05-30
Online:
2024-12-17
Published:
2024-12-25
Contact:
Guoqiang YANG
徐英宇1(), 杨国强1(
), 彭璟1,2, 孙海宁1, 张志炳1
通讯作者:
杨国强
作者简介:
徐英宇(1997—),男,硕士研究生,MF20240036@smail.nju.edu.cn
基金资助:
CLC Number:
Yingyu XU, Guoqiang YANG, Jing PENG, Haining SUN, Zhibing ZHANG. Research on advanced oxidation treatment of coal chemical wastewater using microinterfaces[J]. CIESC Journal, 2024, 75(S1): 283-291.
徐英宇, 杨国强, 彭璟, 孙海宁, 张志炳. 微界面高级氧化处理煤化工废水的研究[J]. 化工学报, 2024, 75(S1): 283-291.
时间/min | COD/(mg/L) | |
---|---|---|
35℃ | 45℃ | |
0 | 361.2 | 361.2 |
10 | 279.8 | 275.4 |
20 | 227.2 | 213.7 |
30 | 180.6 | 162.5 |
50 | 108.3 | 66.2 |
80 | 49.66 | 28.6 |
Table 1 Data on COD of wastewater over time under different temperature conditions
时间/min | COD/(mg/L) | |
---|---|---|
35℃ | 45℃ | |
0 | 361.2 | 361.2 |
10 | 279.8 | 275.4 |
20 | 227.2 | 213.7 |
30 | 180.6 | 162.5 |
50 | 108.3 | 66.2 |
80 | 49.66 | 28.6 |
参数 | 数值 | 备注 |
---|---|---|
反应温度/℃ | 35 | |
入口压力/MPa(A) | 0.2 | |
表观气速/(m/s) | 0.012 | 工况入口 |
表观液速/(m/s) | 0.0022 | |
臭氧浓度/(g/m3) | 147.8 | 氧气转化率取10%① |
进口COD/(g/m3) | 361.2 | |
有效液位高度/mm | 8000 |
Table 2 Structural activity model parameters
参数 | 数值 | 备注 |
---|---|---|
反应温度/℃ | 35 | |
入口压力/MPa(A) | 0.2 | |
表观气速/(m/s) | 0.012 | 工况入口 |
表观液速/(m/s) | 0.0022 | |
臭氧浓度/(g/m3) | 147.8 | 氧气转化率取10%① |
进口COD/(g/m3) | 361.2 | |
有效液位高度/mm | 8000 |
1 | Cui P Z, Qian Y, Yang S Y. New water treatment index system toward zero liquid discharge for sustainable coal chemical processes[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 1370-1378. |
2 | Ma H P, Wang H L, Tian C C, et al. An integrated membrane- and thermal-based system for coal chemical wastewater treatment with near-zero liquid discharge[J]. Journal of Cleaner Production, 2021, 291: 125842. |
3 | Ma H P, Wang H L, Tian C C, et al. An optimized design for zero liquid discharge from coal chemical industry: a case study in China[J]. Journal of Cleaner Production, 2021, 319: 128572. |
4 | Tóth A J, Fózer D, Mizsey P, et al. Physicochemical methods for process wastewater treatment: powerful tools for circular economy in the chemical industry[J]. Reviews in Chemical Engineering, 2023, 39(7): 1123-1151. |
5 | Li D D, Liu J Z, Wang S N, et al. Study on coal water slurries prepared from coal chemical wastewater and their industrial application[J]. Applied Energy, 2020, 268: 114976. |
6 | Liao Y X, Lucas D. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions[J]. Chemical Engineering Science, 2009, 64(15): 3389-3406. |
7 | Chu L B, Xing X H, Yu A F, et al. Enhanced ozonation of simulated dyestuff wastewater by microbubbles[J]. Chemosphere, 2007, 68(10): 1854-1860. |
8 | Shin W T, Mirmiran A, Yiacoumi S, et al. Ozonation using microbubbles formed by electric fields[J]. Separation and Purification Technology, 1999, 15(3): 271-282. |
9 | Li P, Tsuge H, Itoh K. Oxidation of dimethyl sulfoxide in aqueous solution using microbubbles[J]. Industrial & Engineering Chemistry Research, 2009, 48(17): 8048-8053. |
10 | Liu J, Ke L J, Liu J, et al. Enhanced catalytic ozonation towards oxalic acid degradation over novel copper doped manganese oxide octahedral molecular sieves nanorods[J]. Journal of Hazardous Materials, 2019, 371: 42-52. |
11 | González-Labrada K, Richard R, Andriantsiferana C, et al. Enhancement of ciprofloxacin degradation in aqueous system by heterogeneous catalytic ozonation[J]. Environmental Science and Pollution Research International, 2020, 27(2): 1246-1255. |
12 | Akhil D, Lakshmi D, Senthil Kumar P, et al. Occurrence and removal of antibiotics from industrial wastewater[J]. Environmental Chemistry Letters, 2021, 19(2): 1477-1507. |
13 | Waris R F, Farooqi I H. Different advanced oxidation processes for the abatement of pharmaceutical compounds[J]. International Journal of Environmental Science and Technology, 2024, 21(2): 2325-2338. |
14 | García-Abuín A, Gómez-Díaz D, Losada M, et al. Bubble column gas-liquid interfacial area in a polymer+surfactant+water system[J]. Chemical Engineering Science, 2012, 75: 334-341. |
15 | Patel S A, Daly J G, Bukur D B. Holdup and interfacial area measurements using dynamic gas disengagement[J]. AIChE Journal, 1989, 35(6): 931-942. |
16 | Khuntia S, Majumder S K, Ghosh P. Catalytic ozonation of dye in a microbubble system: hydroxyl radical contribution and effect of salt[J]. Journal of Environmental Chemical Engineering, 2016, 4(2): 2250-2258. |
17 | Qadafi M, Notodarmojo S, Zevi Y. Effects of microbubble pre-ozonation time and pH on trihalomethanes and haloacetic acids formation in pilot-scale tropical peat water treatments for drinking water purposes[J]. Science of the Total Environment, 2020, 747: 141540. |
18 | Tao X H, Liu Y F, Jiang H, et al. Microbubble generation with shear flow on large-area membrane for fine particle flotation[J]. Chemical Engineering and Processing - Process Intensification, 2019, 145: 107671. |
19 | Wang X Y, Shuai Y, Zhang H M, et al. Bubble breakup in a swirl-venturi microbubble generator[J]. Chemical Engineering Journal, 2021, 403: 126397. |
20 | Hogan L T, Horak E H, Ward J M, et al. Toward real-time monitoring and control of single nanoparticle properties with a microbubble resonator spectrometer[J]. ACS Nano, 2019, 13(11): 12743-12757. |
21 | Shangguan Y F, Yu S L, Gong C, et al. A review of microbubble and its applications in ozonation[J]. IOP Conference Series: Earth and Environmental Science, 2018, 128: 012149. |
22 | Wang J L, Hu H Z. Microbubble-assisted pressure carbonation for preparation of high purity lithium carbonate[J]. Journal of Materials Research and Technology, 2020, 9(5): 9498-9505. |
23 | 张志炳, 田洪舟, 张锋, 等. 多相反应体系的微界面强化简述[J]. 化工学报, 2018, 69(1): 44-49. |
Zhang Z B, Tian H Z, Zhang F, et al. Overview of microinterface intensification in multiphase reaction systems[J]. CIESC Journal, 2018, 69(1): 44-49. | |
24 | Tian H Z, Pi S F, Feng Y C, et al. One-dimensional drift-flux model of gas holdup in fine-bubble jet reactor[J]. Chemical Engineering Journal, 2020, 386: 121222. |
25 | 杨国强, 曾伟, 罗华勋, 等. 亚硫酸铵微界面强化氧化特性研究[J]. 化工学报, 2020, 71(11): 4918-4926. |
Yang G Q, Zeng W, Luo H X, et al. Study on the characteristics of micro-interface intensified oxidation of ammonium sulfite[J]. CIESC Journal, 2020, 71(11): 4918-4926. | |
26 | 朱秋实, 陈进富, 姜海洋, 等. 臭氧催化氧化机理及其技术研究进展[J]. 化工进展, 2014, 33(4): 1010-1014, 1034. |
Zhu Q S, Chen J F, Jiang H Y, et al. A review of catalytic ozonation: mechanisms and efficiency[J]. Chemical Industry and Engineering Progress, 2014, 33(4): 1010-1014, 1034. | |
27 | 童琴, 董亚梅, 赵昆峰, 等. 负载型稀土臭氧氧化催化剂在水处理中的应用进展[J]. 化工进展, 2019, 38(S1): 226-231. |
Tong Q, Dong Y M, Zhao K F, et al. Application progress of supported rare-earth ozone oxidation catalysts in wastewater treatment[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 226-231. | |
28 | Peng B, Bao W J, Wei L L, et al. Highly active OMS-2 for catalytic ozone decomposition under humid conditions[J]. Petroleum Science, 2019, 16(4): 912-919. |
29 | Bijan L, Mohseni M. Integrated ozone and biotreatment of pulp mill effluent and changes in biodegradability and molecular weight distribution of organic compounds[J]. Water Research, 2005, 39(16): 3763-3772. |
30 | 刘莹, 何宏平, 吴德礼, 等. 非均相催化臭氧氧化反应机制[J]. 化学进展, 2016, 28(7): 1112-1120. |
Liu Y, He H P, Wu D L, et al. Heterogeneous catalytic ozonation reaction mechanism[J]. Progress in Chemistry, 2016, 28(7): 1112-1120. | |
31 | IUPAC.Oxygen and Ozone: Solubility Data Series[M]. Amsterdam: Elsevier, 2015: 465. |
32 | Nadezhdin A D. Mechanism of ozone decomposition in water. The role of termination[J]. Industrial & Engineering Chemistry Research, 1988, 27(4): 548-550. |
33 | Rischbieter E, Stein H, Schumpe A. Ozone solubilities in water and aqueous salt solutions[J]. Journal of Chemical & Engineering Data, 2000, 45(2): 338-340. |
34 | Levenspiel O. Chemical Reaction Engineering[M]. New York: John Wiley & Sons Inc., 1998:157. |
35 | Kazakis N A, Mouza A A, Paras S V. Experimental study of bubble formation at metal porous spargers: effect of liquid properties and sparger characteristics on the initial bubble size distribution[J]. Chemical Engineering Journal, 2008, 137(2): 265-281. |
36 | 钱媛媛, 王永杰, 杨雪晶. 臭氧相关水处理工艺及其传质特征研究进展[J]. 化工进展, 2021, 40(S1): 411-425. |
Qian Y Y, Wang Y J, Yang X J. Application of ozone for water treatment and implication of mass transfer characteristics[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 411-425. | |
37 | 冯玥, 王璐, 陈泉源. 臭氧微气泡深度处理染料废水生化出水[J]. 环境工程学报, 2013, 7(12): 4653-4658. |
Feng Y, Wang L, Chen Q Y. Ozone microbubbles in tertiary purification of biological treatment effluent of dye-making wastewater[J]. Chinese Journal of Environmental Engineering, 2013, 7(12): 4653-4658. | |
38 | Law D, Battaglia F, Heindel T J. Model validation for low and high superficial gas velocity bubble column flows[J]. Chemical Engineering Science, 2008, 63(18): 4605-4616. |
39 | Yin P B, Cao X W, Li Y H, et al. Experimental and numerical investigation on slug initiation and initial development behavior in hilly-terrain pipeline at a low superficial liquid velocity[J]. International Journal of Multiphase Flow, 2018, 101: 85-96. |
[1] | Xinyu DONG, Longfei BIAN, Yiyi YANG, Yuxuan ZHANG, Lu LIU, Teng WANG. Study on flow and heat transfer mechanism of supercritical CO2 in inclined upward tube under cooling conditions [J]. CIESC Journal, 2024, 75(S1): 195-205. |
[2] | Qirui GUO, Liyuan REN, Kang CHEN, Xiangyu HUANG, Weihua MA, Leqin XIAO, Weiliang ZHOU. Numerical simulation of static mixing tubes for HTPB propellant slurry [J]. CIESC Journal, 2024, 75(S1): 206-216. |
[3] | Kuangxi LI, Peiqian YU, Jiangyun WANG, Haoran WEI, Zhigang ZHENG, Liuhai FENG. Flow analysis and structure optimization of micro-bubble swirling air flotation device [J]. CIESC Journal, 2024, 75(S1): 223-234. |
[4] | Xinyue WANG, Xiaohu XU, Haiyang ZHANG, Chunhua YIN. Study on encapsulation and properties vitamin A acetate/cyclodextrin [J]. CIESC Journal, 2024, 75(S1): 321-328. |
[5] | Zhangzhou WANG, Tianqi TANG, Jiajun XIA, Yurong HE. Battery thermal management performance simulation based on composite phase change material [J]. CIESC Journal, 2024, 75(S1): 329-338. |
[6] | Jian HU, Jinghua JIANG, Shengjun FAN, Jianhao LIU, Haijiang ZOU, Wanlong CAI, Fenghao WANG. Research on heat extraction performance of deep U-type borehole heat exchanger [J]. CIESC Journal, 2024, 75(S1): 76-84. |
[7] | Dehui DU, Wei FENG, Jianghui ZHANG, Yanlong XIANG, Gaopan QIAO, Wei LI. Prediction model of flow boiling heat transfer in microfinned hydrophobic composite enhanced tube [J]. CIESC Journal, 2024, 75(S1): 95-107. |
[8] | Guanyu REN, Yifei ZHANG, Xinze LI, Wenjing DU. Numerical study on flow and heat transfer characteristics of airfoil printed circuit heat exchangers [J]. CIESC Journal, 2024, 75(S1): 108-117. |
[9] | Yong YANG, Zixuan ZU, Yukun LI, Dongliang WANG, Zongliang FAN, Huairong ZHOU. Numerical simulation of CO2 absorption by alkali liquor in T-junction cylindrical microchannels [J]. CIESC Journal, 2024, 75(S1): 135-142. |
[10] | Junhao HUANG, Keliang PANG, Fangyuan SUN, Fujun LIU, Zhiyuan GU, Long HAN, Yanquan DUAN, Yanhui FENG. Influence of bell structure of coke dry quenching furnace on coke distribution [J]. CIESC Journal, 2024, 75(S1): 158-169. |
[11] | Shuyue LI, Huan WANG, Shaoqiang ZHOU, Zhihong MAO, Yongmin ZHANG, Junwu WANG, Xiuhua WU. Numerical simulation of hydrogen reduction of U3O8 in fluidized bed reactors using CPFD method [J]. CIESC Journal, 2024, 75(9): 3133-3151. |
[12] | Juhui CHEN, Tong SU, Dan LI, Liwei CHEN, Wensheng LYU, Fanqi MENG. Study on the heat transfer characteristics of microchannels under the action of fin-shaped spoilers [J]. CIESC Journal, 2024, 75(9): 3122-3132. |
[13] | Haoyu WANG, Yang YANG, Wenjie JING, Bin YANG, Yu TANG, Yi LIU. Study on characteristics of gas-liquid spiral annular flow under action by different swirlers [J]. CIESC Journal, 2024, 75(8): 2744-2755. |
[14] | Xiaoyu QIAN, Xuan RUAN, Shuiqing LI. Structural reconstruction and levitation of dielectric particle layers in electric fields [J]. CIESC Journal, 2024, 75(8): 2756-2762. |
[15] | Ziliang ZHU, Shuang WANG, Yu'ang JIANG, Mei LIN, Qiuwang WANG. Solid-liquid phase change algorithm with Euler-Lagrange iteration [J]. CIESC Journal, 2024, 75(8): 2763-2776. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 274
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract |
|
|||||||||||||||||||||||||||||||||||||||||||||||||