CIESC Journal ›› 2024, Vol. 75 ›› Issue (5): 1765-1776.DOI: 10.11949/0438-1157.20240109
• Fluid dynamics and transport phenomena • Previous Articles Next Articles
Chaoyang GUAN1,2(), Guoqing HUANG1,2, Yinan ZHANG1,2, Hongxia CHEN1,2(), Xiaoze DU1,2
Received:
2024-01-24
Revised:
2024-03-22
Online:
2024-06-25
Published:
2024-05-25
Contact:
Hongxia CHEN
关朝阳1,2(), 黄国庆1,2, 张一喃1,2, 陈宏霞1,2(), 杜小泽1,2
通讯作者:
陈宏霞
作者简介:
关朝阳(2000—),男,硕士研究生,gzy13514512459@163.com
基金资助:
CLC Number:
Chaoyang GUAN, Guoqing HUANG, Yinan ZHANG, Hongxia CHEN, Xiaoze DU. Experimental study on enhancement of flow boiling through degassing with copper foam[J]. CIESC Journal, 2024, 75(5): 1765-1776.
关朝阳, 黄国庆, 张一喃, 陈宏霞, 杜小泽. 泡沫铜导离气泡强化流动沸腾换热实验研究[J]. 化工学报, 2024, 75(5): 1765-1776.
Add to citation manager EndNote|Ris|BibTeX
1 | 党超, 贾力, 黄浅. 矩形微槽道内R134a流动沸腾换热特性的实验研究[J]. 工程热物理学报, 2017, 38(6): 1327-1332. |
Dang C, Jia L, Huang Q. Experimental study on flow boiling heat transfer characteristics of R134a in a rectangular micro-channel[J]. Journal of Engineering Thermophysics, 2017, 38(6): 1327-1332. | |
2 | Wang J, Cheng Y, Li X B, et al. Experimental and LBM simulation study on the effect of bubbles merging on flow boiling[J]. International Journal of Heat and Mass Transfer, 2019, 132: 1053-1061. |
3 | Bi Q C. Characteristics of two-phase flow and boiling heat transfer in miniature non-circular channels[D]. Hong Kong: The Hong Kong University of Science and Technology, 2000. |
4 | 罗炜, 贺静, 罗兵, 等. 截面形状对微通道流动沸腾影响的数值研究[J]. 西安交通大学学报, 2019, 53(11): 101-111. |
Luo W, He J, Luo B, et al. Numerical study on the effect of cross-sectional shape of microchannels on flow boiling[J]. Journal of Xi'an Jiaotong University, 2019, 53(11): 101-111. | |
5 | Jiang Y, Xu Y, Qin J, et al. The flow rate distribution of hydrocarbon fuel in parallel channels with different cross section shapes[J]. Applied Thermal Engineering, 2018, 137: 173-183. |
6 | Sempértegui-Tapia D F, Ribatski G. The effect of the cross-sectional geometry on saturated flow boiling heat transfer in horizontal micro-scale channels[J]. Experimental Thermal and Fluid Science, 2017, 89: 98-109. |
7 | 邓聪, 罗小平, 冯振飞, 等. 矩形微通道内制冷剂流动沸腾传热特性及可视化研究[J]. 制冷学报, 2015, 36(6): 1-5. |
Deng C, Luo X P, Feng Z F, et al. Research on boiling heat transfer characteristics and visualization of refrigerant in rectangular microchannels[J]. Journal of Refrigeration, 2015, 36(6): 1-5. | |
8 | Kuo C J, Peles Y. Flow boiling instabilities in microchannels and means for mitigation by reentrant cavities[J]. Journal of Heat Transfer, 2008, 130(7):92-101. |
9 | Xia G D, Ma D D, Zhai Y L, et al. Experimental and numerical study of fluid flow and heat transfer characteristics in microchannel heat sink with complex structure[J]. Energy Conversion and Management, 2015, 105: 848-857. |
10 | Sitar A, Golobic I. Effect of nucleation cavities on enhanced boiling heat transfer in microchannels[J]. Nanoscale and Microscale Thermophysical Engineering, 2016, 20(1): 33-50. |
11 | Zhu Y, Hu H, Sun S, et al. Heat transfer measurements and correlation of refrigerant flow boiling in tube filled with copper foam[J]. International Journal of Refrigeration, 2014, 38: 215-226. |
12 | Min D H, Hwang G S, Usta Y, et al. 2-D and 3-D modulated porous coatings for enhanced pool boiling[J]. International Journal of Heat and Mass Transfer, 2009, 52(11/12): 2607-2613. |
13 | Law M, Lee P S. A comparative study of experimental flow boiling heat transfer and pressure characteristics in straight- and oblique-finned microchannels[J]. International Journal of Heat and Mass Transfer, 2015, 85: 797-810. |
14 | Filho E P B, Jabardo J M S, Barbieri P E L. Convective boiling pressure drop of refrigerant R-134a in horizontal smooth and microfin tubes[J]. International Journal of Refrigeration, 2004, 27(8): 895-903. |
15 | Kim C H, Bang I C, Chang S H. Critical heat flux performance for flow boiling of R-134a in vertical uniformly heated smooth tube and rifled tubes[J]. International Journal of Heat and Mass Transfer, 2005, 48(14): 2868-2877. |
16 | Cheng L, Xia G. Experimental study of CHF in a vertical spirally internally ribbed tube under the condition of high pressures[J]. International Journal of Thermal Sciences, 2002, 41(4): 396-400. |
17 | Ma A X, Wei J J, Yuan M Z, et al. Enhanced flow boiling heat transfer of FC-72 on micro-pin-finned surfaces[J]. International Journal of Heat and Mass Transfer, 2009, 52(13/14): 2925-2931. |
18 | Wan W, Deng D X, Huang Q S, et al. Experimental study and optimization of pin fin shapes in flow boiling of micro pin fin heat sinks[J]. Applied Thermal Engineering, 2017, 114: 436-449. |
19 | Koşar A, Peles Y. Boiling heat transfer in a hydrofoil-based micro pin fin heat sink[J]. International Journal of Heat and Mass Transfer, 2007, 50(5-6): 1018-1034. |
20 | 陈宏霞, 肖红洋, 孙源, 等. 微柱表面液滴定壁温沸腾实验研究[J]. 化工学报, 2019, 70(9): 3363-3369. |
Chen H X, Xiao H Y, Sun Y, et al. Experimental study on droplets boiling on micro-pillar structure surface with constant temperatures[J]. CIESC Journal, 2019, 70(9): 3363-3369. | |
21 | Choi C, Shin J S, Yu D I, et al. Flow boiling behaviors in hydrophilic and hydrophobic microchannels[J]. Experimental Thermal and Fluid Science, 2010, 35(5): 816-824. |
22 | Kousalya A S, Singh K P, Fisher T S. Heterogeneous wetting surfaces with graphitic petal-decorated carbon nanotubes for enhanced flow boiling[J]. International Journal of Heat and Mass Transfer, 2015, 87: 380-389. |
23 | Kim J M, Kim T, Yu D I, et al. Effect of heterogeneous wetting surface characteristics on flow boiling performance[J]. International Journal of Heat and Fluid Flow, 2018, 70: 141-151. |
24 | 陈宏霞, 马福民, 黄林滨. 超浸润性金属丝网的制备及工艺优化[J]. 材料工程, 2017, 45(9): 59-65. |
Chen H X, Ma F M, Huang L B. Fabrication and process optimization of super-wettability metal mesh[J]. Journal of Materials Engineering, 2017, 45(9): 59-65. | |
25 | Chen H X, Xu J L, Li Z J, et al. Stratified two-phase flow pattern modulation in a horizontal tube by the mesh pore cylinder surface[J]. Applied Energy, 2013, 112: 1283-1290. |
26 | Peng X F, Peterson G P, Wang B X. Heat transfer characteristics of water flowing through microchannels[J]. Experimental Heat Transfer, 1994, 7(4): 265-283. |
27 | Matsuda Y, Kawanami O, Orimo R, et al. Simultaneous measurement of gas-liquid interface motion and temperature distribution on heated surface using temperature-sensitive paint[J]. International Journal of Heat and Mass Transfer, 2020, 153: 119567 |
28 | Lee H S. Heat transfer predictions using the Chen Correlation on subcooled flow boiling in a standard IC engine[C]//SAE Technical Paper Series. Warrendale, PA, United States: SAE International, 2009: 2009-01-1530. |
29 | Hua S Y, Huang R H, Li Z, et al. Experimental study on the heat transfer characteristics of subcooled flow boiling with cast iron heating surface[J]. Applied Thermal Engineering, 2015, 77: 180-191. |
30 | Chen J C. Correlation for boiling heat transfer to saturated fluids in convective flow[J]. Industrial & Engineering Chemistry Process Design and Development, 1966, 5(3): 322-329. |
31 | Rohsenow W M. A method of correlating heat-transfer data for surface boiling of liquids[J]. Journal of Fluids Engineering, 1952, 74(6): 969-975. |
32 | Reddy Karri S B. Dynamics of bubble departure in micro-gravity[J]. Chemical Engineering Communications, 1988, 70(1): 127-135. |
33 | Levy S. Forced convection subcooled boiling—prediction of vapor volumetric fraction[J]. International Journal of Heat and Mass Transfer, 1967, 10(7): 951-965. |
[1] | Jinshan WANG, Shixue WANG, Yu ZHU. Influence of cooling surface temperature difference on the high temperature proton-exchange membrane fuel cell performance [J]. CIESC Journal, 2024, 75(5): 2026-2035. |
[2] | Yuhui SHI, Jiyuan XING, Xuehan JIANG, Shuang YE, Weiguang HUANG. Numerical simulation of bubble breakup and coalescence in centrifugal impeller based on PBM [J]. CIESC Journal, 2024, 75(5): 1816-1829. |
[3] | Yifei LI, Xinyu DONG, Weishu WANG, Lu LIU, Yifan ZHAO. Numerical study on heat transfer of dry ice sublimation spray cooling on the surface of micro-ribbed plate [J]. CIESC Journal, 2024, 75(5): 1830-1842. |
[4] | Fan LIU, Yuantong ZHANG, Cheng TAO, Chengyu HU, Xiaoping YANG, Jinjia WEI. Performance of manifold microchannel liquid cooling [J]. CIESC Journal, 2024, 75(5): 1777-1786. |
[5] | Lei XIE, Yongsheng XU, Mei LIN. Comparative study on single-phase flow and heat transfer of different cross-section rib-soft tail structures [J]. CIESC Journal, 2024, 75(5): 1787-1801. |
[6] | Wei WANG, Xu BAI, Xiang ZHAO, Xueliang MA, Wei LIN, Jiuyang YU. Optimization of air flotation cyclone separation conditions based on response surface methodology [J]. CIESC Journal, 2024, 75(5): 1929-1938. |
[7] | Juan LI, Yaowen CAO, Zhangyu ZHU, Lei SHI, Jia LI. Numerical study and structural optimization of microchannel flow and heat transfer characteristics of bionic homocercal fin microchannels [J]. CIESC Journal, 2024, 75(5): 1802-1815. |
[8] | Jinpeng ZHAO, Yongmin ZHANG, Bin LAN, Jiewen LUO, Bidan ZHAO, Junwu WANG. Model development and validation of structural two-fluid model for heat transfer in a gas-solid bubbling fluidized bed [J]. CIESC Journal, 2024, 75(4): 1497-1507. |
[9] | Juan WANG, Xiuming LI, Weitao SHAO, Xu DING, Ying HUO, Lianchao FU, Yunyu BAI, Di LI. Numerical simulation of flow and mass transfer characteristics in porous plate bubbling column reactor [J]. CIESC Journal, 2024, 75(3): 801-814. |
[10] | Sirui CHEN, Jingliang BI, Lei WANG, Yuanyuan LI, Gui LU. Unsupervised-feature extraction of gas-liquid two-phase flow pattern based on convolutional autoencoder: principle and application [J]. CIESC Journal, 2024, 75(3): 847-857. |
[11] | Zhicheng DENG, Shifeng XU, Qidong WANG, Jiarui WANG, Simin WANG. Process and energy consumption analysis of high salt and high COD wastewater treatment by submerged combustion [J]. CIESC Journal, 2024, 75(3): 1000-1008. |
[12] | Nailiang LI, Changsong LIU, Xueping DU, Yifan ZHANG, Dongtai HAN. Analysis of multi-scale fractal characteristics of severe slugging based on Hurst exponent [J]. CIESC Journal, 2024, 75(2): 484-492. |
[13] | Zhipeng LIU, Changying ZHAO, Rui WU, Zhihao ZHANG. Experimental study of gas-liquid flow visualization in gradient porous transport layers based on hydrogen production by water electrolysis [J]. CIESC Journal, 2024, 75(2): 520-530. |
[14] | Qichao LIU, Shibo ZHANG, Yunlong ZHOU, Yuqing LI, Cong CHEN, Yiwen RAN. Gas-liquid two-phase flow regimes and transformation mechanism in horizontal tube under fluctuating vibration [J]. CIESC Journal, 2024, 75(2): 493-504. |
[15] | Dong HAN, Ningning GAO, Xinde TANG, Shenggao GONG, Liangshu XIA. Model development for simulating bubble breakup in gas-liquid bubbly flows with the Eulerian-Lagrangian approach [J]. CIESC Journal, 2024, 75(2): 553-565. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||