Bo GAO1(), Jiaqi WANG1, Zhiliang LIU2, Xuanlie ZHAO3, Kun GE1(
)
Received:
2024-08-07
Revised:
2024-11-11
Online:
2025-03-28
Published:
2025-04-21
Contact:
Kun GE
高波1(), 王佳琪1, 刘志亮2, 赵玄烈3, 葛坤1(
)
通讯作者:
葛坤
作者简介:
高波(1997—),男,博士研究生,bogao@hrbeu.edu.cn
基金资助:
CLC Number:
Bo GAO, Jiaqi WANG, Zhiliang LIU, Xuanlie ZHAO, Kun GE. Modeling and thermodynamic and economic analysis of offshore wind power-based hydrogen production systems[J]. CIESC Journal, DOI: 10.11949/0438-1157.20240904.
高波, 王佳琪, 刘志亮, 赵玄烈, 葛坤. 海上风电制氢系统建模及热力学与经济学分析[J]. 化工学报, DOI: 10.11949/0438-1157.20240904.
Fig.3 Comparison between the simulated polarization curve of a single cell in the PEM fuel cell model and the experimental results from the literature
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
风力机切入风速 | 3 m/s | 质子交换膜厚度 | 0.0254 cm |
风力机额定功率 | 4 MW | 燃料电池活化面积,Afc | 500 cm2 |
风力机额定风速 | 10 m/s | 燃料电池运行压力 | 1.5 bar |
风能利用系数,Cp | 0.45 | 用户用电负荷,Wele | 300 kW |
风力机效率,ηwp | 0.8 | 蓄电池充电功率,Wbat | 25 kW |
风力机叶片半径,Rwp | 155 m | 压缩机等熵效率,ηC | 0.85 |
PEM电解槽运行温度,Tel | 80℃ | 海水淡化功耗,PRO | 3.0 kWh/kg |
PEM电解槽运行压力,pel | 1.5 bar | 换热器最小换热温差 | 5℃ |
电解槽单元数目,Nel | 800 | 水泵等熵效率,ηC | 0.85 |
电解槽活化面积,Ael | 1000 cm2 | 氢气储罐入口温度 | 30℃ |
Table 1 The basic parameters of the system model
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
风力机切入风速 | 3 m/s | 质子交换膜厚度 | 0.0254 cm |
风力机额定功率 | 4 MW | 燃料电池活化面积,Afc | 500 cm2 |
风力机额定风速 | 10 m/s | 燃料电池运行压力 | 1.5 bar |
风能利用系数,Cp | 0.45 | 用户用电负荷,Wele | 300 kW |
风力机效率,ηwp | 0.8 | 蓄电池充电功率,Wbat | 25 kW |
风力机叶片半径,Rwp | 155 m | 压缩机等熵效率,ηC | 0.85 |
PEM电解槽运行温度,Tel | 80℃ | 海水淡化功耗,PRO | 3.0 kWh/kg |
PEM电解槽运行压力,pel | 1.5 bar | 换热器最小换热温差 | 5℃ |
电解槽单元数目,Nel | 800 | 水泵等熵效率,ηC | 0.85 |
电解槽活化面积,Ael | 1000 cm2 | 氢气储罐入口温度 | 30℃ |
月份 | 场景一 | 场景二 | 场景三 | 场景四 | 总时长 h | |||
---|---|---|---|---|---|---|---|---|
时长 h | 风速 m/s | 时长 h | 风速 m/s | 时长 h | 风速 m/s | 时长 h | ||
1 | 613 | 8.16 | 7 | 4.5 | 77 | 3.77 | 47 | 744 |
2 | 561 | 8.44 | 4 | 4.5 | 84 | 3.76 | 23 | 672 |
3 | 446 | 7.97 | 9 | 4.5 | 152 | 3.75 | 137 | 744 |
4 | 367 | 8.59 | 8 | 4.5 | 148 | 3.68 | 197 | 720 |
5 | 533 | 7.98 | 9 | 4.5 | 107 | 3.78 | 95 | 744 |
6 | 377 | 6.84 | 9 | 4.5 | 134 | 3.70 | 200 | 720 |
7 | 401 | 7.62 | 14 | 4.5 | 191 | 3.77 | 138 | 744 |
8 | 360 | 7.66 | 11 | 4.5 | 169 | 3.77 | 204 | 744 |
9 | 420 | 8.01 | 10 | 4.5 | 155 | 3.73 | 135 | 720 |
10 | 619 | 8.72 | 4 | 4.5 | 70 | 3.75 | 51 | 744 |
11 | 575 | 8.94 | 8 | 4.5 | 82 | 3.75 | 55 | 720 |
12 | 611 | 7.17 | 12 | 4.5 | 97 | 3.79 | 24 | 744 |
全年 | 5883 | 8.01 | 105 | 4.5 | 1466 | 3.75 | 1306 | 8760 |
Table 2 Duration of system operation in different scenarios and average wind speed in each month
月份 | 场景一 | 场景二 | 场景三 | 场景四 | 总时长 h | |||
---|---|---|---|---|---|---|---|---|
时长 h | 风速 m/s | 时长 h | 风速 m/s | 时长 h | 风速 m/s | 时长 h | ||
1 | 613 | 8.16 | 7 | 4.5 | 77 | 3.77 | 47 | 744 |
2 | 561 | 8.44 | 4 | 4.5 | 84 | 3.76 | 23 | 672 |
3 | 446 | 7.97 | 9 | 4.5 | 152 | 3.75 | 137 | 744 |
4 | 367 | 8.59 | 8 | 4.5 | 148 | 3.68 | 197 | 720 |
5 | 533 | 7.98 | 9 | 4.5 | 107 | 3.78 | 95 | 744 |
6 | 377 | 6.84 | 9 | 4.5 | 134 | 3.70 | 200 | 720 |
7 | 401 | 7.62 | 14 | 4.5 | 191 | 3.77 | 138 | 744 |
8 | 360 | 7.66 | 11 | 4.5 | 169 | 3.77 | 204 | 744 |
9 | 420 | 8.01 | 10 | 4.5 | 155 | 3.73 | 135 | 720 |
10 | 619 | 8.72 | 4 | 4.5 | 70 | 3.75 | 51 | 744 |
11 | 575 | 8.94 | 8 | 4.5 | 82 | 3.75 | 55 | 720 |
12 | 611 | 7.17 | 12 | 4.5 | 97 | 3.79 | 24 | 744 |
全年 | 5883 | 8.01 | 105 | 4.5 | 1466 | 3.75 | 1306 | 8760 |
文献 | 制氢系统类型 | 系统输出 | 能量效率 | 㶲效率 |
---|---|---|---|---|
[ | 风能 | 氢气、电能、热能、冷能 | 36.1% | 59.5% |
[ | 风能 | 氢气、电能、热能 | 20.0% | 21.2% |
[ | 风能、生物质能 | 氢气、电能、热能、冷能 | 25.0% | 41.2% |
[ | 太阳能 | 氢气、电能、淡水 | 38.5% | 35.6% |
本文 | 风能 | 氢气、电能 | 26.6% | 54.4% |
Table 3 Comparison of system efficiency between this study and related research on hydrogen production systems from renewable energy sources
文献 | 制氢系统类型 | 系统输出 | 能量效率 | 㶲效率 |
---|---|---|---|---|
[ | 风能 | 氢气、电能、热能、冷能 | 36.1% | 59.5% |
[ | 风能 | 氢气、电能、热能 | 20.0% | 21.2% |
[ | 风能、生物质能 | 氢气、电能、热能、冷能 | 25.0% | 41.2% |
[ | 太阳能 | 氢气、电能、淡水 | 38.5% | 35.6% |
本文 | 风能 | 氢气、电能 | 26.6% | 54.4% |
1 | Egeland-Eriksen T, Jensen J F, Ulleberg Ø, et al. Simulating offshore hydrogen production via PEM electrolysis using real power production data from a 2.3 MW floating offshore wind turbine[J]. International Journal of Hydrogen Energy, 2023, 48(74): 28712-28732. |
2 | 邱一苇, 吉旭, 朱文聪, 等. 面向新能源规模化消纳的绿氢化工技术研究现状与关键支撑技术展望[J]. 中国电机工程学报, 2023, 43(18): 6934-6955. |
Qiu Y W, Ji X, Zhu W C, et al. Research status of green hydrogen-based chemical engineering technology and prospect of key supporting technologies for large-scale utilization of new energies[J]. Proceedings of the CSEE, 2023, 43(18): 6934-6955.. | |
3 | 姜波, 丁杰, 方舣洲, 等. 涠洲岛海洋风能和波浪能资源评估[J]. 太阳能学报, 2023, 44(10): 461-466. |
Jiang B, Ding J, Fang Y Z, et al. Offshore wind energy and wave energy resource valuation in Weizhou island[J]. Acta Energiae Solaris Sinica, 2023, 44(10): 461-466. | |
4 | Jang D, Kim K, Kim KH, et al. Techno-economic analysis and Monte Carlo simulation for green hydrogen production using offshore wind power plant[J]. Energy Conversion and Management, 2022, 263: 115695. |
5 | d'Amore-Domenech R, Leo T J. Sustainable hydrogen production from offshore marine renewable farms: techno-energetic insight on seawater electrolysis technologies[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8006-8022. |
6 | Ishaq H, Dincer I, Naterer G F. Performance investigation of an integrated wind energy system for co-generation of power and hydrogen[J]. International Journal of Hydrogen Energy, 2018, 43(19): 9153-9164. |
7 | Cai D S, Acen C, Hu Y H, et al. Cost and thermodynamic analysis of wind-hydrogen production via multi-energy systems[J]. Energy Conversion and Management, 2024, 306: 118286. |
8 | 张焱, 郝振波, 朱振涛, 等. 海上风能岸上制氢的经济可行性分析[J]. 电力建设, 2023, 44(3): 148-154. |
Zhang Y, Hao Z B, Zhu Z T, et al. Economic feasibility analysis of onshore hydrogen production using offshore wind power[J]. Electric Power Construction, 2023, 44(3): 148-154. | |
9 | Nasser M, Megahed T F, Ookawara S, et al. Performance evaluation of PV panels/wind turbines hybrid system for green hydrogen generation and storage: Energy, exergy, economic, and enviroeconomic[J]. Energy Conversion and Management, 2022, 267: 115870. |
10 | Nasser M, Hassan H. Techno-enviro-economic analysis of hydrogen production via low and high temperature electrolyzers powered by PV/Wind turbines/Waste heat[J]. Energy Conversion and Management, 2023, 278: 116693. |
11 | Rezaei M, Khalilpour K R, Mohamed M A. Co-production of electricity and hydrogen from wind: A comprehensive scenario-based techno-economic analysis[J]. International Journal of Hydrogen Energy, 2021, 46(35): 18242-18256. |
12 | Han B, Steen S M, Mo J K, et al. Electrochemical performance modeling of a proton exchange membrane electrolyzer cell for hydrogen energy[J]. International Journal of Hydrogen Energy, 2015, 40(22): 7006-7016. |
13 | Mohebali Nejadian M, Ahmadi P, Houshfar E. Comparative optimization study of three novel integrated hydrogen production systems with SOEC, PEM, and alkaline electrolyzer[J]. Fuel, 2023, 336: 126835. |
14 | Abdin Z, Webb C J, Gray E M. Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell[J]. International Journal of Hydrogen Energy, 2015, 40(39): 13243-13257. |
15 | Liu L T, Zhai R R, Hu Y D. Performance evaluation of wind-solar-hydrogen system for renewable energy generation and green hydrogen generation and storage: energy, exergy, economic, and enviroeconomic[J]. Energy, 2023, 276: 127386. |
16 | 刘秀龙, 曹泷, 徐进良, 等. ORC驱动RO海水淡化不同能量回收方式性能分析[J]. 动力工程学报, 2018, 38(4): 329-336. |
Liu X L, Cao S, Xu J L, et al. Performance analysis of an ORC-RO desalination system with different energy recovery methods[J]. Journal of Chinese Society of Power Engineering, 2018, 38(4): 329-336. | |
17 | 楚帅, 葛维春, 李音璇, 等. 含海水淡化负荷的可再生能源消纳技术研究综述[J]. 智慧电力, 2021, 49(11): 14-23. |
Chu S, Ge W C, Li Y X, et al. Review on renewable energy integration technology with seawater desalination load[J]. Smart Power, 2021, 49(11): 14-23. | |
18 | Ma Y G, Morozyuk T, Liu M, et al. Optimal integration of recompression supercritical CO2 Brayton cycle with main compression intercooling in solar power tower system based on exergoeconomic approach[J]. Applied Energy, 2019, 242: 1134-1154. |
19 | Qi X R, Kochan O, Ma Z J, et al. Energy, exergy, exergoeconomic and exergoenvironmental analyses of a hybrid renewable energy system with hydrogen fuel cells[J]. International Journal of Hydrogen Energy, 2024, 52: 617-634. |
20 | Shokri A, Sanavi Fard M. Techno-economic assessment of water desalination: Future outlooks and challenges[J]. Process Safety and Environmental Protection, 2023, 169: 564-578. |
21 | Sadeghi S, Ghandehariun S, Naterer G F. Exergoeconomic and multi-objective optimization of a solar thermochemical hydrogen production plant with heat recovery[J]. Energy Conversion and Management, 2020, 225: 113441. |
22 | Khan M A, Young C, Mackinnon C, et al. The Techno- Economics of Hydrogen Compression[J]. Transition Accelerator Technical Briefs, 2021, 1(1): 1-36. |
23 | Shakibi H, Assareh E, Chitsaz A, et al. Exergoeconomic and optimization study of a solar and wind-driven plant employing machine learning approaches; a case study of Las Vegas city[J]. Journal of Cleaner Production, 2023, 385: 135529. |
24 | Zhang S G, Li K Y, Zhu P F, et al. An efficient hydrogen production process using solar thermo-electrochemical water-splitting cycle and its techno-economic analyses and multi-objective optimization[J]. Energy Conversion and Management, 2022, 266: 115859. |
25 | 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274. |
Zhang S A, Liu G L. Multi-objective optimization of high-efficiency solar water electrolysis hydrogen production system and its performance[J]. CIESC Journal, 2023, 74(3): 1260-1274. | |
26 | Sutar S V, Nirukhe A B, Yadav G D. Hydrogen production using hybrid six-step copper-chlorine thermochemical cycle: Energy and exergy analyses[J]. International Journal of Hydrogen Energy, 2024, 49: 1478-1489. |
27 | Zhao X Y, Chen H, Zheng Q W, et al. Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission[J]. Energy, 2023, 265: 126333. |
28 | Mehrenjani J R, Gharehghani A, Nasrabadi A M, et al. Design, modeling and optimization of a renewable-based system for power generation and hydrogen production[J]. International Journal of Hydrogen Energy, 2022, 47(31): 14225-14242. |
29 | Debe M K, Hendricks S M, Vernstrom G D, et al. Initial performance and durability of ultra-low loaded NSTF electrodes for PEM electrolyzers[J]. Journal of the Electrochemical Society, 2012, 159(6): K165-K176. |
30 | Tu Z K, Zhang H N, Luo Z P, et al. Evaluation of 5 kW proton exchange membrane fuel cell stack operated at 95℃ under ambient pressure[J]. Journal of Power Sources, 2013, 222: 277-281. |
31 | Zhao P, Wang J F, Gao L, et al. Parametric analysis of a hybrid power system using organic Rankine cycle to recover waste heat from proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2012, 37(4): 3382-3391. |
32 | 王辉东, 姚海燕, 郭强, 等. 质子交换膜电解水制氢系统建模与仿真[J]. 南通大学学报(自然科学版), 2024 (5): 1-10. |
Wang H D, Yao H Y, Guo Qet al. Modeling and simulation of proton exchange membrane electrolyzer system[J]. Journal of Nantong University (Natural Science Edition), 2024 (5): 1-10. | |
33 | 张岑, 魏华, 庄妍, 等. 海上风电制氢经济评价模型及关键影响参数[J]. 天然气工业, 2023, 43(2): 146-154. |
Zhang C, Wei H, Zhuang Y, et al. Economic evaluation model of offshore wind to hydrogen and its key influence parameters[J]. Natural Gas Industry, 2023, 43(2): 146-154. | |
34 | Salehmin M N I, Husaini T, Goh J, et al. High-pressure PEM water electrolyser: A review on challenges and mitigation strategies towards green and low-cost hydrogen production[J]. Energy Conversion and Management, 2022, 268: 115985. |
35 | Shabani M J, Babaelahi M. Innovative solar-baased multi-generation system for sustainable power generation, desalination, hydrogen production, and refrigeration in a novel configuration[J]. International Journal of Hydrogen Energy, 2024, 59: 1115-1131. |
[1] | Ke QI, Di WANG, Zhe XIE, Dongsheng CHEN, Yunlong ZHOU, Lingfang SUN. Research on transient characteristics of solid oxide fuel cells considering coupling features of multiphysics fields [J]. CIESC Journal, 2025, 76(3): 1264-1274. |
[2] | Wenlong JIA, Huan XIAO, Xiangyu LENG, Qiaojing HUANG, Chengwei LIU, Xia WU. Experimental and numerical simulation of ultrasonic cavitation microjet cleaning of heavy deposition in crude oil storage tank [J]. CIESC Journal, 2025, 76(3): 1288-1296. |
[3] | Zongting WANG, Lili WANG, Xiaoyan SUN, Li XIA, Shaohui TAO, Shuguang XIANG. Simplified phase equilibrium correlation-based efficient and short-cut distillation column model [J]. CIESC Journal, 2025, 76(3): 1133-1142. |
[4] | Jingrun LI, Siyu YANG, Qinghui LIU, An PAN, Jiayue WANG, Xiaogui FU, Hao YU. Analysis of multiple operating strategies for large-scale wind power coupled with thermal power for hydrogen production under various scenarios [J]. CIESC Journal, 2025, 76(3): 1191-1206. |
[5] | Yinjie ZHOU, Sibei JI, Songyang HE, Xu JI, Ge HE. Machine learning-assisted high-throughput screening approach for CO2 separation from CO2-rich natural gas using metal-organic frameworks [J]. CIESC Journal, 2025, 76(3): 1093-1101. |
[6] | Junbing XIAO, Bo ZOU, Jiandi REN, Changhui LIU, Chuankun JIA. Research on heat storage performance of chloride composite molten salt based on phase diagram analysis [J]. CIESC Journal, 2025, 76(3): 963-974. |
[7] | Jun WAN, Jiarui SONG, Chunhuang FAN, Lele WEI, Yina NIE, Lin LIU. Highly efficient hole transfer for promoting photocatalytic hydrogen production from alkaline methanol aqueous solution [J]. CIESC Journal, 2025, 76(3): 1064-1075. |
[8] | Wenfeng FU, Zhenlei WANG, Xin WANG. An industrial process performance evaluation method based on unbalanced samples generated by DVAE-WAFFN-GAN [J]. CIESC Journal, 2025, 76(2): 769-786. |
[9] | Shuyue LI, Huan WANG, Shaoqiang ZHOU, Zhihong MAO, Yongmin ZHANG, Junwu WANG, Xiuhua WU. Current status and prospects of research on fluidization characteristics of high-density particles [J]. CIESC Journal, 2025, 76(2): 466-483. |
[10] | Xiaohang ZHONG, Wei XU, Wen ZHANG, Li XU, Yuxin WANG. A critical review on the effects of Fe impurity on H2 production via alkaline water electrolysis [J]. CIESC Journal, 2025, 76(2): 519-531. |
[11] | Xiangjun MENG, Linrui YANG, Lipei PENG, Xiankui YANG, Yingxi HUA, Renren ZHANG, Kaitian ZHENG, Chunjian XU. Design and control of nitrogen trifluoride distillation separation process [J]. CIESC Journal, 2025, 76(2): 707-717. |
[12] | Linrui YANG, Jianyi LIU, Ling LI, Yongchao HE, Kaitian ZHENG, Jianpo REN, Chunjian XU. Process design and energy saving for benzene/cyclohexane/cyclohexene extractive distillation process [J]. CIESC Journal, 2025, 76(2): 731-743. |
[13] | Chuanchao HE, Jinghong ZHOU, Yueqiang CAO, Yao SHI, Xinggui ZHOU. Bed-particle dual scale coupled simulation on Ag/SiO2 catalyzed hydrogenation of oxalate to methyl glycolate [J]. CIESC Journal, 2025, 76(2): 654-666. |
[14] | Falu DANG, Zhiguo SUN, Zhao GAO, Gang WANG, Zhengyu CHEN, Linzhou ZHANG, Jingcun LIAN, Meijia LIU, Zhongdong ZHANG, Chaowei LIU. One-step catalytic cracking of crude oil to light olefins: experimental and reaction pathway studies [J]. CIESC Journal, 2025, 76(2): 667-685. |
[15] | Ke ZHANG, Weijie REN, Mengna WANG, Kaifeng FAN, Liping CHANG, Jiabin LI, Tao MA, Jinping TIAN. Liquid-liquid mixing characteristics of Bunsen reaction products in microchannels [J]. CIESC Journal, 2025, 76(2): 623-636. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||