CIESC Journal ›› 2025, Vol. 76 ›› Issue (3): 1264-1274.DOI: 10.11949/0438-1157.20240865
• Energy and environmental engineering • Previous Articles Next Articles
Ke QI1(), Di WANG1, Zhe XIE2, Dongsheng CHEN1(
), Yunlong ZHOU2, Lingfang SUN1
Received:
2024-07-29
Revised:
2024-09-23
Online:
2025-03-28
Published:
2025-03-25
Contact:
Dongsheng CHEN
齐珂1(), 王迪1, 谢喆2, 陈东升1(
), 周云龙2, 孙灵芳1
通讯作者:
陈东升
作者简介:
齐珂(1999—),女,硕士研究生,2202200680@neepu.edu.cn
基金资助:
CLC Number:
Ke QI, Di WANG, Zhe XIE, Dongsheng CHEN, Yunlong ZHOU, Lingfang SUN. Research on transient characteristics of solid oxide fuel cells considering coupling features of multiphysics fields[J]. CIESC Journal, 2025, 76(3): 1264-1274.
齐珂, 王迪, 谢喆, 陈东升, 周云龙, 孙灵芳. 考虑多物理场耦合特性的固体氧化物燃料电池瞬态特性研究[J]. 化工学报, 2025, 76(3): 1264-1274.
几何结构 | 数值 |
---|---|
电池长度L | 40 mm |
集流板高度HL | 1.5 mm |
集流板宽度WL | 2 mm |
流道高度HC | 1 mm |
阳极支撑层厚度HASL | 0.4 mm |
阳极功能层厚度HAFL | 0.01 mm |
电解质厚度HELE | 0.01 mm |
阴极功能层厚度HCFL | 0.01 mm |
阴极电流收集层厚度HCCCL | 0.015 mm |
Table 1 Structural parameters of the SOFC unit model
几何结构 | 数值 |
---|---|
电池长度L | 40 mm |
集流板高度HL | 1.5 mm |
集流板宽度WL | 2 mm |
流道高度HC | 1 mm |
阳极支撑层厚度HASL | 0.4 mm |
阳极功能层厚度HAFL | 0.01 mm |
电解质厚度HELE | 0.01 mm |
阴极功能层厚度HCFL | 0.01 mm |
阴极电流收集层厚度HCCCL | 0.015 mm |
边界条件 | 数值 | 边界条件 | 数值 |
---|---|---|---|
气体入口温度 | 1073 K | 阳极热导率 | 6 W/(m·K) |
空气进口流速 | 3 m/s | 电解质热导率 | 2.7 W/(m·K) |
燃料气体进口流速 | 0.5 m/s | 阴极热导率 | 11 W/(m·K) |
初始工作压力 | 1 atm | 集流板热导率 | 20 W/(m·K) |
阴极孔隙率 | 0.3 | 阳极孔隙率 | 0.3 |
阳极渗透率 | 1.76×10-11 m2 | 开路电压 | 1 V |
阴极渗透率 | 1.76×10-11 m2 | 初始极化值 | 0.05 V |
阳极侧气体物质摩尔分数占比 | H2∶H2O=0.97∶0.03 | 阴极侧气体物质摩尔分数占比 | N2∶O2 = 0.79∶0.21 |
Table 2 Partial conditional parameters for SOFC simulation
边界条件 | 数值 | 边界条件 | 数值 |
---|---|---|---|
气体入口温度 | 1073 K | 阳极热导率 | 6 W/(m·K) |
空气进口流速 | 3 m/s | 电解质热导率 | 2.7 W/(m·K) |
燃料气体进口流速 | 0.5 m/s | 阴极热导率 | 11 W/(m·K) |
初始工作压力 | 1 atm | 集流板热导率 | 20 W/(m·K) |
阴极孔隙率 | 0.3 | 阳极孔隙率 | 0.3 |
阳极渗透率 | 1.76×10-11 m2 | 开路电压 | 1 V |
阴极渗透率 | 1.76×10-11 m2 | 初始极化值 | 0.05 V |
阳极侧气体物质摩尔分数占比 | H2∶H2O=0.97∶0.03 | 阴极侧气体物质摩尔分数占比 | N2∶O2 = 0.79∶0.21 |
输出电压/V | 温度梯度/(K/cm) | |||||
---|---|---|---|---|---|---|
1.1 s | 10 s | 50 s | 100 s | 200 s | 300 s | |
0.5+0.1 | 0.13 | 2.68 | 8.47 | 10.59 | 11.10 | 11.11 |
0.5-0.1 | 0.16 | 3.32 | 10.67 | 13.79 | 15.03 | 15.20 |
Table 3 Temperature gradient within the cell at different time when changing the output voltage
输出电压/V | 温度梯度/(K/cm) | |||||
---|---|---|---|---|---|---|
1.1 s | 10 s | 50 s | 100 s | 200 s | 300 s | |
0.5+0.1 | 0.13 | 2.68 | 8.47 | 10.59 | 11.10 | 11.11 |
0.5-0.1 | 0.16 | 3.32 | 10.67 | 13.79 | 15.03 | 15.20 |
时刻/s | 最大温度梯度/(K/cm) |
---|---|
5 | 1.9 |
10 | 4.0 |
50 | 12.4 |
100 | 15.4 |
200 | 16.4 |
300 | 16.5 |
Table 4 Temperature gradient within the cell at different time when the fuel flow rate drops to zero
时刻/s | 最大温度梯度/(K/cm) |
---|---|
5 | 1.9 |
10 | 4.0 |
50 | 12.4 |
100 | 15.4 |
200 | 16.4 |
300 | 16.5 |
1 | Malik K, Capareda S C, Kamboj B R, et al. Biofuels production: a review on sustainable alternatives to traditional fuels and energy sources[J]. Fuels, 2024, 5(2): 157-175. |
2 | 隋依言, 姚辉超, 王秀林, 等. 基于专利的固体氧化物燃料电池技术趋势分析[J]. 现代化工, 2024, 44(3): 5-9. |
Sui Y Y, Yao H C, Wang X L, et al. Patent-based analysis on development trends of solid oxide fuel cell technology[J]. Modern Chemical Industry, 2024, 44(3): 5-9. | |
3 | Shi N, Xie Y, Yang Y, et al. Review of anodic reactions in hydrocarbon fueled solid oxide fuel cells and strategies to improve anode performance and stability[J]. Materials for Renewable and Sustainable Energy, 2020, 9(1): 6. |
4 | 王宇磊. 固体氧化物燃料电池稳态与动态特性分析[D]. 北京:北京交通大学, 2019. |
Wang Y L. Analysis of steady-state and dynamic characteristics of solid oxide fuel cells[D]. Beijing: Beijing Jiaotong University, 2019. | |
5 | Ouyang T C, Zhao Z K, Lu J, et al. Waste heat cascade utilisation of solid oxide fuel cell for marine applications[J]. Journal of Cleaner Production, 2020, 275: 124133. |
6 | Khan T S, Hussain S, Anjum U, et al. In-silico screening of metal and bimetallic alloy catalysts for SOFC anode at high, intermediate and low temperature operations[J]. Electrochimica Acta, 2018, 281: 654-664. |
7 | Okoroafor E R, Bracci J, Boness N L, et al. A methodology for fueling mobility markets with hydrogen from natural gas plus carbon capture and sequestration[J]. International Journal of Greenhouse Gas Control, 2024, 133: 104095. |
8 | 宋明, 马帅, 杜传胜, 等. 不同流道布置的平板式固体氧化物燃料电池蠕变损伤研究[J]. 机械工程学报, 2023, 59(10): 76-84. |
Song M, Ma S, Du C S, et al. Creep damage of planar solid oxide fuel cell with different arrangements of flow channels[J]. Journal of Mechanical Engineering, 2023, 59(10): 76-84. | |
9 | Ma S, Song M, Sun Y, et al. Study on creep damage and life prediction of the planar solid oxide fuel cell by modeling of multiphysics coupled[J]. International Journal of Hydrogen Energy, 2024, 51: 1573-1583. |
10 | Dang Z, Shen X, Ma J Y, et al. Multiphysics coupling simulation and parameter study of planar solid oxide fuel cell[J]. Frontiers in Chemistry, 2021, 8: 609338. |
11 | Chen D F, Zhu Y L, Han S, et al. Investigate the effect of a parallel-cylindrical flow field on the solid oxide fuel cell stack performance by 3D multiphysics simulating[J]. Journal of Energy Storage, 2023, 60: 106587. |
12 | Li H Y, Cui T H, Han M F. Anode-oxidizing critical operating conditions of large planar solid oxide fuel cell[J]. ECS Transactions, 2021, 103(1): 831-843. |
13 | Pellegrinelli C, Huang Y L, Taillon J A, et al. Investigating the relationship between operating conditions and SOFC cathode degradation[J]. ECS Transactions, 2015, 68(1): 773. |
14 | Yakabe H, Hishinuma M, Uratani M, et al. Evaluation and modeling of performance of anode-supported solid oxide fuel cell[J]. Journal of Power Sources, 2000, 86(1/2): 423-431. |
15 | Ferguson J R, Fiard J M, Herbin R. Three-dimensional numerical simulation for various geometries of solid oxide fuel cells[J]. Journal of Power Sources, 1996, 58(2): 109-122. |
16 | Ni M. 2D thermal-fluid modeling and parametric analysis of a planar solid oxide fuel cell[J]. Energy Conversion and Management, 2010, 51(4): 714-721. |
17 | Andersson M, Yuan J L, Sundén B. SOFC modeling considering electrochemical reactions at the active three phase boundaries[J]. International Journal of Heat and Mass Transfer, 2012, 55(4): 773-788. |
18 | Zhu P F, Yao J, Wu Z, et al. Construction of a transient multi-physics model of solid oxide fuel cell fed by biomass syngas considering the carbon deposition and temperature effect[J]. Chemical Engineering Journal, 2022, 442: 136159. |
19 | Jiang C Y, Gu Y C, Guan W B, et al. 3D thermo-electro-chemo-mechanical coupled modeling of solid oxide fuel cell with double-sided cathodes[J]. International Journal of Hydrogen Energy, 2020, 45(1): 904-915. |
20 | Li B H, Wang C Y, Liu M, et al. Transient performance analysis of a solid oxide fuel cell during power regulations with different control strategies based on a 3D dynamic model[J]. Renewable Energy, 2023, 218: 119266. |
21 | 阳大楠. 基于多物理场耦合模型的固体氧化物燃料电池优化控制研究[D]. 成都: 电子科技大学, 2021. |
Yang D N. Study on optimal control of solid oxide fuel cell based on multi-physical field coupling model[D]. Chengdu: University of Electronic Science and Technology of China, 2021. | |
22 | 曹红亮. 固体氧化物燃料电池系统建模及热管理的研究[D]. 武汉: 华中科技大学, 2008: 39-40. |
Cao H L. Study on modeling and thermal management of solid oxide fuel cell system[D]. Wuhan: Huazhong University of Science and Technology, 2008: 39-40. | |
23 | Cao H L, Deng Z H, Li X, et al. Dynamic modeling of electrical characteristics of solid oxide fuel cells using fractional derivatives[J]. International Journal of Hydrogen Energy, 2010, 35(4): 1749-1758. |
24 | Ni M, Leung M K H, Leung D Y C. Parametric study of solid oxide fuel cell performance[J]. Energy Conversion and Management, 2007, 48(5): 1525-1535. |
25 | 苏石川, 孔为, 陈代芬, 等. 热能工程与先进能源技术仿真与设计[M]. 北京: 化学工业出版社, 2015. |
Su S C, Kong W, Chen D F, et al. Simulation and Design of Thermal Energy Engineering and Advanced Energy Technology[M]. Beijing: Chemical Industry Press, 2015. | |
26 | Andersson M, Nakajima H, Kitahara T, et al. Comparison of humidified hydrogen and partly pre-reformed natural gas as fuel for solid oxide fuel cells applying computational fluid dynamics[J]. International Journal of Heat and Mass Transfer, 2014, 77: 1008-1022. |
27 | 吴亭雨. 固体氧化物燃料电池的多物理场模拟[D]. 哈尔滨: 哈尔滨工业大学, 2020. |
Wu T Y. Multi-physical field simulation of solid oxide fuel cell[D]. Harbin: Harbin Institute of Technology, 2020. | |
28 | Wang Y, Zhan R B, Qin Y Z, et al. Three-dimensional modeling of pressure effect on operating characteristics and performance of solid oxide fuel cell[J]. International Journal of Hydrogen Energy, 2018, 43(43): 20059-20076. |
29 | Todd B, Young J B. Thermodynamic and transport properties of gases for use in solid oxide fuel cell modelling[J]. Journal of Power Sources, 2002, 110(1): 186-200. |
30 | Lee S, Kim H, Yoon K J, et al. The effect of fuel utilization on heat and mass transfer within solid oxide fuel cells examined by three-dimensional numerical simulations[J]. International Journal of Heat and Mass Transfer, 2016, 97: 77-93. |
31 | Nerat M. Modeling and analysis of short-period transient response of a single, planar, anode supported, solid oxide fuel cell during load variations[J]. Energy, 2017, 138: 728-738. |
[1] | Junbing XIAO, Xiangyu ZHONG, Jiandi REN, Fangfang ZHONG, Changhui LIU, Chuankun JIA. Research on the heat storage properties of stearic acid phase change materials enhanced by bio-carbon materials [J]. CIESC Journal, 2025, 76(3): 1312-1322. |
[2] | Xiankai ZHANG, Boyu WANG, Yali GUO, Shengqiang SHEN. Calculation and analysis of thermal performance of horizontal circular tube falling film evaporative condenser [J]. CIESC Journal, 2025, 76(3): 995-1005. |
[3] | Gonghan GUO, Huidian DING, Qiang LI, Shengkun JIA, Xing QIAN, Yang YUAN, Haisheng CHEN, Yiqing LUO. Dynamic Bayesian optimization method for batch distillation operation process [J]. CIESC Journal, 2025, 76(2): 755-768. |
[4] | Nannan XIE, He CHEN, Guanghua YE, Zhongming SHU, Songbao FU, Xinggui ZHOU. Interaction of multiple impellers for gas-liquid stirred tank and optimization of their combinations [J]. CIESC Journal, 2025, 76(2): 564-575. |
[5] | Xiangjun MENG, Linrui YANG, Lipei PENG, Xiankui YANG, Yingxi HUA, Renren ZHANG, Kaitian ZHENG, Chunjian XU. Design and control of nitrogen trifluoride distillation separation process [J]. CIESC Journal, 2025, 76(2): 707-717. |
[6] | Yan LI, Hongli GUO, Guoqing SU, Jianwen ZHANG. Gas-liquid two-phase flow and erosion-corrosion in air cooler of hydrogenation unit [J]. CIESC Journal, 2025, 76(1): 141-150. |
[7] | Yan LI, Lijun ZHENG, Enyong ZHANG, Yunfei WANG. Model and experimental study of fluid permeation characteristics in a deep-water oil and gas tube [J]. CIESC Journal, 2024, 75(S1): 118-125. |
[8] | Yong YANG, Zixuan ZU, Yukun LI, Dongliang WANG, Zongliang FAN, Huairong ZHOU. Numerical simulation of CO2 absorption by alkali liquor in T-junction cylindrical microchannels [J]. CIESC Journal, 2024, 75(S1): 135-142. |
[9] | Xinyi LUO, Qiang XU, Yonglu SHE, Tengfei NIE, Liejin GUO. Study on bubble dynamic characteristics and mass transfer mechanism in photoelectrochemical water splitting for hydrogen production [J]. CIESC Journal, 2024, 75(9): 3083-3093. |
[10] | Zichi YANG, Bingqi XIE, Ruixin SHI, Hong LEI, Chen CHEN, Caijin ZHOU, Jisong ZHANG. Research progress on efficient and safe gas-liquid mass transfer and reaction processes in tube-in-tube reactor [J]. CIESC Journal, 2024, 75(9): 3011-3027. |
[11] | Ran WANG, Huan WANG, Xiaoyun XIONG, Huimin GUAN, Yunfeng ZHENG, Cailin CHEN, Yucai QIN, Lijuan SONG. Visual analysis of mass transfer enhanced active site utilization efficiency of FCC catalyst [J]. CIESC Journal, 2024, 75(9): 3198-3209. |
[12] | Qianqian WANG, Bing LI, Weibo ZHENG, Guomin CUI, Bingtao ZHAO, Pingwen MING. Three-dimensional modeling of local dynamic characteristics in hydrogen fuel cells [J]. CIESC Journal, 2024, 75(8): 2812-2820. |
[13] | Jinrui YANG, Hongfei ZHENG, Xinglong MA, Rihui JIN, Shen LIANG. Study on two-stage stacked humidification-dehumidification desalination device [J]. CIESC Journal, 2024, 75(7): 2446-2454. |
[14] | Jinshan WANG, Shixue WANG, Yu ZHU. Influence of cooling surface temperature difference on the high temperature proton-exchange membrane fuel cell performance [J]. CIESC Journal, 2024, 75(5): 2026-2035. |
[15] | Binbin FENG, Mingjia LU, Zhihong HUANG, Yiwen CHANG, Zhiming CUI. Application and optimization of carbon supports in proton exchange membrane fuel cells [J]. CIESC Journal, 2024, 75(4): 1469-1484. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 67
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 193
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||