1 |
中国煤炭工业协会. 2023煤炭行业发展年度报告[R]. 北京: 中国煤炭工业协会, 2024.
|
|
China Coal Industry Association. 2023 Coal industry development annual report[R]. Beijing: China Coal Industry Association, 2024.
|
2 |
Zhu H T, Cao S, Su Z M, et al. China's future energy vision: multi-scenario simulation based on energy consumption structure under dual carbon targets[J]. Energy, 2024, 301: 131751.
|
3 |
张珂, 李晓玲, 常丽萍, 等. 硫化氢资源化技术研究进展[J]. 现代化工, 2022, 42(2): 72-77, 83.
|
|
Zhang K, Li X L, Chang L P, et al. Research progress on technology for reutilization of hydrogen sulfide[J]. Modern Chemical Industry, 2022, 42(2): 72-77, 83.
|
4 |
De Crisci A G, Moniri A, Xu Y M. Hydrogen from hydrogen sulfide: towards a more sustainable hydrogen economy[J]. International Journal of Hydrogen Energy, 2019, 44(3): 1299-1327.
|
5 |
Xu W T, Hu X N, Xiang M, et al. Highly effective direct decomposition of H2S into H2 and S by microwave catalysis over CoS-MoS2/γ-Al2O3 microwave catalysts[J]. Chemical Engineering Journal, 2017, 326: 1020-1029.
|
6 |
Lum M M X, Ng K H, Lai S Y, et al. Sulfur dioxide catalytic reduction for environmental sustainability and circular economy: a review[J]. Process Safety and Environmental Protection, 2023, 176: 580-604.
|
7 |
Lei Y, Du L, Liu X Y, et al. Natural gas sweetening using tailored ionic liquid-methanol mixed solvent with selective removal of H2S and CO2 [J]. Chemical Engineering Journal, 2023, 476: 146424.
|
8 |
Safari F, Dincer I. A review and comparative evaluation of thermochemical water splitting cycles for hydrogen production[J]. Energy Conversion and Management, 2020, 205: 112182.
|
9 |
Wang H. Hydrogen production from a chemical cycle of H2S splitting[J]. International Journal of Hydrogen Energy, 2007, 32(16): 3907-3914.
|
10 |
Zhang S H, Huang B Y, He Y, et al. Demetallized Pt x Ni y /C catalyst for SO2 electrochemical oxidation in the SI/HyS hydrogen production cycles[J]. International Journal of Hydrogen Energy, 2021, 46(17): 10161-10171.
|
11 |
Wang H, Le Person A, Zhao X, et al. A low-temperature hydrogen production process based on H2S splitting cycle for sustainable oil sands bitumen upgrading[J]. Fuel Processing Technology, 2013, 108: 55-62.
|
12 |
Zhang K, Zhao X, Chen S H, et al. Direct electrolysis of Bunsen reaction product HI/H2SO4/H2O/toluene mixture for hydrogen production: Pt electrode characterization[J]. International Journal of Hydrogen Energy, 2018, 43(30): 13702-13710.
|
13 |
Zhang K, Bao W R, Chang L P, et al. A review of recent researches on Bunsen reaction for hydrogen production via S-I water and H2S splitting cycles[J]. Journal of Energy Chemistry, 2019, 33: 46-58.
|
14 |
钱锦远, 李晓娟, 吴赞, 等. 微通道内液-液两相流流型及传质的研究进展[J]. 化工进展, 2019, 38(4): 1624-1633.
|
|
Qian J Y, Li X J, Wu Z, et al. Research progress on flow regimes and mass transfer of liquid-liquid two-phase flow in microchannels[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1624-1633.
|
15 |
刘冠颖, 方玉诚, 郭辉进, 等. 微反应器发展概况[J]. 当代化工, 2010, 39(3): 315-318.
|
|
Liu G Y, Fang Y C, Guo H J, et al. Development of microreactors[J]. Contemporary Chemical Industry, 2010, 39(3): 315-318.
|
16 |
刘熠, 郭兆寿, 韩永博, 等. 微通道反应器的研究进展[J]. 辽宁化工, 2018, 47(7): 681-684.
|
|
Liu Y, Guo Z S, Han Y B, et al. Research progress of microchannel reactors[J]. Liaoning Chemical Industry, 2018, 47(7): 681-684.
|
17 |
Wang F, Zhu J M, Hu X J, et al. Rapid nitrate determination with a portable lab-on-chip device based on double microstructured assisted reactors[J]. Lab on a Chip, 2021, 21(6): 1109-1117.
|
18 |
Lorenzini D, Joshi Y. Numerical modeling and experimental validation of two-phase microfluidic cooling in silicon devices for vertical integration of microelectronics[J]. International Journal of Heat and Mass Transfer, 2019, 138: 194-207.
|
19 |
Shi H H, Nie K X, Dong B, et al. Recent progress of microfluidic reactors for biomedical applications[J]. Chemical Engineering Journal, 2019, 361: 635-650.
|
20 |
叶飞飞, 张宝丹, 靳海波, 等. 微通道反应器合成纳米BaSO4颗粒及其在干片多功能层上的应用[J]. 化工学报, 2019, 70(3): 1179-1187.
|
|
Ye F F, Zhang B D, Jin H B, et al. Preparation of BaSO4 nanoparticles in microchannel reactor and its application in multifunctional layers of medical slices[J]. CIESC Journal, 2019, 70(3): 1179-1187.
|
21 |
Nguyen N T, Wu Z G. Micromixers—a review[J]. Journal of Micromechanics and Microengineering, 2005, 15(2): R1-R16.
|
22 |
Chen K X, Lu H, Sun M, et al. Mixing enhancement of a novel C-SAR microfluidic mixer[J]. Chemical Engineering Research and Design, 2018, 132: 338-345.
|
23 |
刘兆轩, 张程宾, 韩群, 等. 锯齿型微通道流动与传热特性数值模拟[J]. 化工进展, 2023, 42(11): 5622-5636.
|
|
Liu Z X, Zhang C B, Han Q, et al. Numerical simulation of fluid flow and heat transfer characteristics in a saw-like microchannel[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5622-5636.
|
24 |
Yang A S, Chuang F C, Chen C K, et al. A high-performance micromixer using three-dimensional Tesla structures for bio-applications[J]. Chemical Engineering Journal, 2015, 263: 444-451.
|
25 |
张伟业, 朱晓武, 罗永皓, 等. 复合型叶序微流道混合性能的数值模拟[J]. 化工进展, 2024, 43(S1): 154-165.
|
|
Zhang W Y, Zhu X W, Luo Y H, et al. Numerical simulation of mixing performance of composite phyllotaxy microfluidic channel[J]. Chemical Industry and Engineering Progress, 2024, 43(S1): 154-165.
|
26 |
Lv H C, Wang J D, Shu Z M, et al. Residence time distribution and heat/mass transfer performance of a millimeter scale butterfly-shaped reactor[J]. Chinese Chemical Letters, 2023, 34(4): 107710.
|
27 |
Heibel A K, Lebens P J M, Middelhoff J W, et al. Liquid residence time distribution in the film flow monolith reactor[J]. AIChE Journal, 2005, 51(1): 122-133.
|
28 |
Chen S Z, Zhang P, Wang L J, et al. Viscosity-composition-temperature data of HI-I2-H2O solution at atmospheric pressure[J]. International Journal of Hydrogen Energy, 2018, 43(49): 22021-22031.
|
29 |
Qian J Y, Li X J, Gao Z X, et al. Mixing efficiency and pressure drop analysis of liquid-liquid two phases flow in serpentine microchannels[J]. Journal of Flow Chemistry, 2019, 9(3): 187-197.
|
30 |
Hou S Y, Sun M L, Cao L M, et al. Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor[J]. Chinese Chemical Letters, 2024, 35(4): 108761.
|
31 |
Abiev R S, Makusheva I V, Mironova A I. Comparison of hydrodynamics and micromixing quality in a two-stage microreactor with intensely swirled flows and in a T-mixer[J]. Chemical Engineering and Processing-Process Intensification, 2024, 202: 109829.
|
32 |
王林. 基于简化模型的T型微反应器设计[J]. 计算机与应用化学, 2012, 29(7): 859-862.
|
|
Wang L. Optimal design of T-shaped microreactors by using a simplified model[J]. Computers and Applied Chemistry, 2012, 29(7): 859-862.
|
33 |
杨雪芳, 林莹. 挡板结构对微混合器内流动与混合的影响[J]. 上海应用技术学院学报(自然科学版), 2016, 16(4): 338-343.
|
|
Yang X F, Lin Y. Effect of baffle structure on fluid flow and mixing in the micromixer[J]. Journal of Shanghai Institute of Technology (Natural Science), 2016, 16(4): 338-343.
|
34 |
Zhao S F, Nie Y Y, Zhang W Y, et al. Microfluidic field strategy for enhancement and scale up of liquid-liquid homogeneous chemical processes by optimization of 3D spiral baffle structure[J]. Chinese Journal of Chemical Engineering, 2023, 56: 255-265.
|
35 |
Al-Azzawi M, Mjalli F S, Husain A, et al. A review on the hydrodynamics of the liquid-liquid two-phase flow in the microchannels[J]. Industrial & Engineering Chemistry Research, 2021, 60(14): 5049-5075.
|
36 |
Yoshimura M, Shimoyama K, Misaka T, et al. Optimization of passive grooved micromixers based on genetic algorithm and graph theory[J]. Microfluidics and Nanofluidics, 2019, 23(3): 30.
|
37 |
Bahei Islami S, Ahmadi S. The effect of flow parameters on mixing degree of a three dimensional rhombus micromixer with obstacles in the middle of the mixing channel using oscillatory inlet velocities[J]. Challenges in Nano and Micro Scale Science and Technology, 2019, 7(1): 62-71.
|
38 |
He X H, Xia T, Gao L F, et al. Simulation and experimental study of asymmetric split and recombine micromixer with D-shaped sub-channels[J]. Micro&Nano Letters, 2019, 14(3): 293-298.
|
39 |
Li T C, Chen X Y. Numerical investigation of 3D novel chaotic micromixers with obstacles[J]. International Journal of Heat and Mass Transfer, 2017, 115: 278-282.
|
40 |
Ganguli A, Bhatt V, Yagodnitsyna A, et al. A review of pressure drop and mixing characteristics in passive mixers involving miscible liquids[J]. Micromachines, 2024, 15(6): 691.
|