CIESC Journal ›› 2025, Vol. 76 ›› Issue (3): 1191-1206.DOI: 10.11949/0438-1157.20240976

• Energy and environmental engineering • Previous Articles     Next Articles

Analysis of multiple operating strategies for large-scale wind power coupled with thermal power for hydrogen production under various scenarios

Jingrun LI1(), Siyu YANG1(), Qinghui LIU2, An PAN2, Jiayue WANG2, Xiaogui FU2, Hao YU1()   

  1. 1.School of Chemistry and Chemical Engineering, South China University of Technology, Guangdong Key Laboratory of Green Chemical Products Technology, Guangzhou 510640, Guangdong, China
    2.SPIC (Jieyang) Qianzhan Power Generation Co. , Ltd. , Jieyang 522000, Guangdong, China
  • Received:2024-08-30 Revised:2024-10-23 Online:2025-03-28 Published:2025-03-25
  • Contact: Siyu YANG, Hao YU

大规模风电耦合火电制氢多情景下不同运行策略分析

李京润1(), 杨思宇1(), 刘庆辉2, 潘安2, 王嘉岳2, 符小贵2, 余皓1()   

  1. 1.华南理工大学化学与化工学院,广东省绿色化学产品技术重点实验室,广东 广州 510640
    2.国电投(揭阳)前詹发电有限公司,广东 揭阳 522000
  • 通讯作者: 杨思宇,余皓
  • 作者简介:李京润(2000—),男,硕士研究生,202221025305@mail.scut.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(U22A20415);广东省基础与应用基础研究基金项目(2023A1515012071)

Abstract:

This study constructs a hybrid energy power generation and hydrogen production system model including wind power, thermal power, batteries and electrolytic hydrogen production equipment to explore the economic benefits of large-scale wind-thermal power generation and hydrogen production systems under different operating strategies. Focusing on a 700 MW wind farm and a 350 MW thermal power plant, the study employs three strategies: green electricity hydrogen production, green electricity-valley electricity hydrogen production, and green electricity-thermal power hydrogen production. A mixed-integer model is established to maximize annual profit, analyzing system performance under various wind resources and electrolyzer capacities. The results indicate that wind resources and electrolyzer capacity significantly influence system performance and strategy selection. In wind-rich conditions, green electricity-thermal power hydrogen production is optimal with a 500 MW electrolyzer capacity. In wind-scarce conditions, the green electricity-valley electricity strategy with a 400 MW capacity offers the best economic performance while maintaining lower carbon emissions. A combined approach using the green electricity-valley electricity strategy during wind-rich seasons and green electricity-thermal power strategy during wind-poor seasons can achieve maximum annual profit within reasonable carbon emission limits. Furthermore, the study analyzes the impact of hydrogen production system investment costs and carbon trading mechanisms on hydrogen prices. It reveals that as investment costs decrease and carbon emission-related costs increase, the green electricity hydrogen production strategy becomes more economically viable in the future.

Key words: wind energy, electro-hydrogen hybrid energy hydrogen production system model, multi-strategy, techno-economic analysis, hydrogen production

摘要:

构建了包含风力发电、火力发电、蓄电池和电解制氢设备的混合能源发电制氢系统模型,探究大规模风-火发电制氢系统在不同运行策略下的经济效益。以700 MW风电场和350 MW火电厂为研究对象,采用绿电制氢、绿电-谷电制氢和绿电-火电制氢三种策略,建立年利润最大化的混合整数模型,分析不同风力资源和电解槽装机容量下的系统性能,结果表明,风力资源和电解槽容量显著影响系统性能和运行策略的选择。风力充足时,500 MW电解槽容量下绿电-火电制氢最优;风力匮乏时,400 MW容量下绿电-谷电策略在拥有较低碳排放的同时经济性最优。富风季采用绿电-谷电策略,贫风季采用绿电-火电策略的组合方案可在合理碳排放范围内实现最大年利润。此外,还分析了制氢系统投资成本和碳交易机制对氢气价格的影响,发现随着投资成本降低,碳排放相关成本的上升,绿电制氢策略在未来更具有经济性。

关键词: 风能, 电-氢混合能源制氢系统模型, 多策略, 技术经济分析, 制氢

CLC Number: