CIESC Journal ›› 2025, Vol. 76 ›› Issue (3): 1191-1206.DOI: 10.11949/0438-1157.20240976
• Energy and environmental engineering • Previous Articles Next Articles
Jingrun LI1(), Siyu YANG1(
), Qinghui LIU2, An PAN2, Jiayue WANG2, Xiaogui FU2, Hao YU1(
)
Received:
2024-08-30
Revised:
2024-10-23
Online:
2025-03-28
Published:
2025-03-25
Contact:
Siyu YANG, Hao YU
李京润1(), 杨思宇1(
), 刘庆辉2, 潘安2, 王嘉岳2, 符小贵2, 余皓1(
)
通讯作者:
杨思宇,余皓
作者简介:
李京润(2000—),男,硕士研究生,202221025305@mail.scut.edu.cn
基金资助:
CLC Number:
Jingrun LI, Siyu YANG, Qinghui LIU, An PAN, Jiayue WANG, Xiaogui FU, Hao YU. Analysis of multiple operating strategies for large-scale wind power coupled with thermal power for hydrogen production under various scenarios[J]. CIESC Journal, 2025, 76(3): 1191-1206.
李京润, 杨思宇, 刘庆辉, 潘安, 王嘉岳, 符小贵, 余皓. 大规模风电耦合火电制氢多情景下不同运行策略分析[J]. 化工学报, 2025, 76(3): 1191-1206.
参数 | 数值 |
---|---|
0.01×302 | |
3 | |
25 | |
13 | |
4000 | |
0.0046 | |
0.95 | |
0.95 | |
8.05×10-5 | |
-2.5×10-7 | |
1.002 | |
8.424 | |
247.3 | |
0.185 | |
141.86 | |
250 | |
0.96 |
Table 1 System key parameters [18-19]
参数 | 数值 |
---|---|
0.01×302 | |
3 | |
25 | |
13 | |
4000 | |
0.0046 | |
0.95 | |
0.95 | |
8.05×10-5 | |
-2.5×10-7 | |
1.002 | |
8.424 | |
247.3 | |
0.185 | |
141.86 | |
250 | |
0.96 |
机组 | 出力功率/MW | 爬坡功率/MW | a/tce | b/(tce/MWh) | c/(106 tce/(MWh)2) | 启停时间/h | ||
---|---|---|---|---|---|---|---|---|
最小 | 最大 | 上限 | 下限 | |||||
#1 | 125 | 250 | 100 | -100 | 5.26 | 0.31 | 37.38 | 4 |
#2 | 50 | 100 | 50 | -50 | 4.65 | 0.32 | 45.86 | 2 |
Table 2 Thermal power unit parameters[26]
机组 | 出力功率/MW | 爬坡功率/MW | a/tce | b/(tce/MWh) | c/(106 tce/(MWh)2) | 启停时间/h | ||
---|---|---|---|---|---|---|---|---|
最小 | 最大 | 上限 | 下限 | |||||
#1 | 125 | 250 | 100 | -100 | 5.26 | 0.31 | 37.38 | 4 |
#2 | 50 | 100 | 50 | -50 | 4.65 | 0.32 | 45.86 | 2 |
设备 | 投资成本 | 运维成本 |
---|---|---|
风力发电机 | 7000 CNY/kW | 34 CNY/kW |
碱性电解槽 | 4000 CNY/kW | 80 CNY/kW |
蓄电池 | 1200 CNY/kW | 24 CNY/kW |
储罐 | 3800 CNY/kW | 76 CNY/kW |
逆变整流器 | 60 CNY/kW | — |
Table 3 Capital investment and operational maintenance costs of key equipment[18, 27]
设备 | 投资成本 | 运维成本 |
---|---|---|
风力发电机 | 7000 CNY/kW | 34 CNY/kW |
碱性电解槽 | 4000 CNY/kW | 80 CNY/kW |
蓄电池 | 1200 CNY/kW | 24 CNY/kW |
储罐 | 3800 CNY/kW | 76 CNY/kW |
逆变整流器 | 60 CNY/kW | — |
指标 | 数值 |
---|---|
氢气产量/(m3/h,标准工况) | 1000 |
氧气产量/(m3/h,标准工况) | 500 |
系统最大工作压力/MPa | 1.6 |
电解槽工作温度/℃ | 90 |
额定工作电流/A | 8000 |
电解槽小室数量/个 | 302 |
额定工作电压/V | 604 |
运行工作范围/% | 30~100 |
Table 4 Main technical parameters of single alkaline electrolyzer[28]
指标 | 数值 |
---|---|
氢气产量/(m3/h,标准工况) | 1000 |
氧气产量/(m3/h,标准工况) | 500 |
系统最大工作压力/MPa | 1.6 |
电解槽工作温度/℃ | 90 |
额定工作电流/A | 8000 |
电解槽小室数量/个 | 302 |
额定工作电压/V | 604 |
运行工作范围/% | 30~100 |
Technology | Emissions/(kg/kg) |
---|---|
natural gas | 10~13 |
coal | 22~26 |
grid electricity | 24 |
Table 5 Emissions for conventional hydrogen production[29]
Technology | Emissions/(kg/kg) |
---|---|
natural gas | 10~13 |
coal | 22~26 |
grid electricity | 24 |
策略 | 氢气价格/(CNY/kg) | ||||||
---|---|---|---|---|---|---|---|
200 MW | 250 MW | 300 MW | 350 MW | 400 MW | 450 MW | 500 MW | |
全季节策略1 | 20.0 | 20.1 | 20.2 | 20.4 | 20.5 | 20.7 | 20.9 |
全季节策略2 | 20.2 | 20.3 | 20.5 | 20.7 | 20.8 | 21.0 | 21.1 |
全季节策略3 | 20.4 | 20.6 | 20.8 | 21.0 | 21.2 | 21.4 | 21.5 |
富风季策略1贫风季策略2 | 20.0 | 20.1 | 20.2 | 20.4 | 20.5 | 20.6 | 20.7 |
富风季策略1贫风季策略3 | 20.2 | 20.3 | 20.4 | 20.6 | 20.6 | 20.7 | 20.8 |
富风季策略2贫风季策略1 | 20.1 | 20.3 | 20.4 | 20.7 | 20.9 | 21.1 | 21.3 |
富风季策略2贫风季策略3 | 20.3 | 20.4 | 20.6 | 20.8 | 21.0 | 21.1 | 21.2 |
富风季策略3贫风季策略1 | 20.3 | 20.4 | 20.6 | 20.9 | 21.1 | 21.4 | 21.6 |
富风季策略3贫风季策略2 | 20.3 | 20.5 | 20.6 | 20.9 | 21.0 | 21.2 | 21.4 |
Table 6 Effect of electrolyzer capacities on total seasonal hydrogen price under different investment costs
策略 | 氢气价格/(CNY/kg) | ||||||
---|---|---|---|---|---|---|---|
200 MW | 250 MW | 300 MW | 350 MW | 400 MW | 450 MW | 500 MW | |
全季节策略1 | 20.0 | 20.1 | 20.2 | 20.4 | 20.5 | 20.7 | 20.9 |
全季节策略2 | 20.2 | 20.3 | 20.5 | 20.7 | 20.8 | 21.0 | 21.1 |
全季节策略3 | 20.4 | 20.6 | 20.8 | 21.0 | 21.2 | 21.4 | 21.5 |
富风季策略1贫风季策略2 | 20.0 | 20.1 | 20.2 | 20.4 | 20.5 | 20.6 | 20.7 |
富风季策略1贫风季策略3 | 20.2 | 20.3 | 20.4 | 20.6 | 20.6 | 20.7 | 20.8 |
富风季策略2贫风季策略1 | 20.1 | 20.3 | 20.4 | 20.7 | 20.9 | 21.1 | 21.3 |
富风季策略2贫风季策略3 | 20.3 | 20.4 | 20.6 | 20.8 | 21.0 | 21.1 | 21.2 |
富风季策略3贫风季策略1 | 20.3 | 20.4 | 20.6 | 20.9 | 21.1 | 21.4 | 21.6 |
富风季策略3贫风季策略2 | 20.3 | 20.5 | 20.6 | 20.9 | 21.0 | 21.2 | 21.4 |
策略 | 氢价格/(CNY/kg) | ||||||
---|---|---|---|---|---|---|---|
200 MW | 250 MW | 300 MW | 350 MW | 400 MW | 450 MW | 500 MW | |
全季节策略1 | 27.1 | 27.8 | 28.6 | 29.6 | 30.5 | 31.5 | 32.5 |
全季节策略2 | 27.6 | 28.2 | 28.8 | 29.5 | 30.2 | 30.9 | 31.5 |
全季节策略3 | 28.1 | 28.7 | 29.3 | 30.0 | 30.6 | 31.2 | 31.7 |
富风季策略1贫风季策略2 | 27.3 | 27.8 | 28.4 | 29.1 | 29.7 | 30.3 | 30.9 |
富风季策略1贫风季策略3 | 27.5 | 28.0 | 28.6 | 29.2 | 29.7 | 30.2 | 30.7 |
富风季策略2贫风季策略1 | 27.4 | 28.1 | 29.0 | 30.0 | 31.0 | 32.1 | 33.1 |
富风季策略2贫风季策略3 | 27.8 | 28.4 | 29.0 | 29.6 | 30.2 | 30.8 | 31.3 |
富风季策略3贫风季策略1 | 27.7 | 28.5 | 29.4 | 30.4 | 31.4 | 32.5 | 33.5 |
富风季策略3贫风季策略2 | 27.9 | 28.5 | 29.2 | 29.9 | 30.6 | 31.3 | 32.0 |
Table 7 Effect of electrolyzer capacities on total seasonal hydrogen price under different envission allowances
策略 | 氢价格/(CNY/kg) | ||||||
---|---|---|---|---|---|---|---|
200 MW | 250 MW | 300 MW | 350 MW | 400 MW | 450 MW | 500 MW | |
全季节策略1 | 27.1 | 27.8 | 28.6 | 29.6 | 30.5 | 31.5 | 32.5 |
全季节策略2 | 27.6 | 28.2 | 28.8 | 29.5 | 30.2 | 30.9 | 31.5 |
全季节策略3 | 28.1 | 28.7 | 29.3 | 30.0 | 30.6 | 31.2 | 31.7 |
富风季策略1贫风季策略2 | 27.3 | 27.8 | 28.4 | 29.1 | 29.7 | 30.3 | 30.9 |
富风季策略1贫风季策略3 | 27.5 | 28.0 | 28.6 | 29.2 | 29.7 | 30.2 | 30.7 |
富风季策略2贫风季策略1 | 27.4 | 28.1 | 29.0 | 30.0 | 31.0 | 32.1 | 33.1 |
富风季策略2贫风季策略3 | 27.8 | 28.4 | 29.0 | 29.6 | 30.2 | 30.8 | 31.3 |
富风季策略3贫风季策略1 | 27.7 | 28.5 | 29.4 | 30.4 | 31.4 | 32.5 | 33.5 |
富风季策略3贫风季策略2 | 27.9 | 28.5 | 29.2 | 29.9 | 30.6 | 31.3 | 32.0 |
1 | 新华社.习近平在第七十五届联合国大会一般性辩论上发表重要讲话[R].中华人民共和国中央人民政府, 2020. https://www.gov.cn/xinwen/2020-09/22/content_5546168.htm.Xinhua News Agency. Xi Jinping delivers important speech at the general debate of the 75th UN General Assembly[R]. Central People’s Government of the People’s Republic of China, 2020. https://www.gov.cn/xinwen/2020/09/22/content_5546168.htm. |
2 | 李贵贤, 曹阿波, 孟文亮, 等. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
Li G X, Cao A B, Meng W L, et al. Process design and evaluation of CO2 to methanol coupled with SOEC[J]. CIESC Journal, 2023, 74(7): 2999-3009. | |
3 | 吉旭, 周步祥, 贺革, 等. 大规模可再生能源电解水制氢合成氨关键技术与应用研究进展[J]. 工程科学与技术, 2022, 54(5): 1-11. |
Ji X, Zhou B X, He G, et al. Research review of the key technology and application of large-scale water electrolysis powered by renewable energy to hydrogen and ammonia production[J]. Advanced Engineering Sciences, 2022, 54(5): 1-11. | |
4 | 广东省人民政府办公厅广东省人民政府办公厅关于印发广东省海洋经济发展“十四五”规划的通知[EB/OL]. [2021-12-14]. . |
Office of the People’s Governement of Guangdong Province. General Office of the People’s Government of Guangdong Province. Notice on Issuing the “14th Five-Year Plan” for the Development of Guangdong’s Marine Economy[EB/OL]. [2021-12-14]. . | |
5 | Luo Z B, Wang X B, Wen H, et al. Hydrogen production from offshore wind power in South China[J]. International Journal of Hydrogen Energy, 2022, 47(58): 24558-24568. |
6 | Scolaro M, Kittner N. Optimizing hybrid offshore wind farms for cost-competitive hydrogen production in Germany[J]. International Journal of Hydrogen Energy, 2022, 47(10): 6478-6493. |
7 | Nascimento da Silva G, Rochedo P R R, Szklo A. Renewable hydrogen production to deal with wind power surpluses and mitigate carbon dioxide emissions from oil refineries[J]. Applied Energy, 2022, 311: 118631. |
8 | 王靖, 康丽霞, 刘永忠. 化工系统消纳可再生能源的电-氢协调储能系统优化设计[J]. 化工学报, 2020, 71(3): 1131-1142. |
Wang J, Kang L X, Liu Y Z. Optimal design of electricity-hydrogen energy storage systems for renewable energy penetrating into chemical process systems[J]. CIESC Journal, 2020, 71(3): 1131-1142. | |
9 | 安广禄, 刘永忠, 康丽霞. 适应季节性氨需求的可再生能源合成氨系统优化设计[J]. 化工学报, 2021, 72(3): 1595-1605. |
An G L, Liu Y Z, Kang L X. Optimal design of synthetic ammonia production system powered by renewable energy for seasonal demands of ammonia[J]. CIESC Journal, 2021, 72(3): 1595-1605. | |
10 | 王集杰, 韩哲, 陈思宇, 等. 太阳燃料甲醇合成[J]. 化工进展, 2022, 41(3): 1309-1317. |
Wang J J, Han Z, Chen S Y, et al. Liquid sunshine methanol[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1309-1317. | |
11 | Hussam W K, Barhoumi E M, Abdul-Niby M, et al. Techno-economic analysis and optimization of hydrogen production from renewable hybrid energy systems: shagaya renewable power plant-Kuwait[J]. International Journal of Hydrogen Energy, 2024, 58: 56-68. |
12 | Gallo M A, García Clúa J G. Sizing and analytical optimization of an alkaline water electrolyzer powered by a grid-assisted wind turbine to minimize grid power exchange[J]. Renewable Energy, 2023, 216: 118990. |
13 | 李永毅, 王子晗, 张磊, 等. 风-光-氢-燃气轮机一体化氢电耦合系统容量配置优化[J]. 中国电机工程学报, 2025, 45(2): 489-502. |
Li Y Y, Wang Z H, Zhang L, et al. Capacity configuration optimization of integrated wind-photovoltaic-hydrogen-gas turbine hydrogen-electricity coupling system[J]. Proceedings of the CSEE, 2025, 45(2): 489-502. | |
14 | Li R Z, Jin X M, Yang P, et al. Large-scale offshore wind integration by wind-thermal-electrolysis-battery (WTEB) power system: a case study of Yangxi, China[J]. International Journal of Hydrogen Energy, 2024, 52: 467-484. |
15 | 袁铁江, 高玲玉, 谢永胜, 等. 基于氢能的风-火耦合多能系统设计与综合评估[J]. 电力自动化设备, 2021, 41(10): 227-233, 255. |
Yuan T J, Gao L Y, Xie Y S, et al. Design and comprehensive evaluation of wind-thermal power coupling multi-energy system based on hydrogen energy[J]. Electric Power Automation Equipment, 2021, 41(10): 227-233, 255. | |
16 | 邵桂萍, 许洪华. 可再生能源综合系统现状与未来发展趋势研究[J]. 太阳能, 2024(7): 127-132. |
Shao G P, Xu H H. Research on present situation and future development trend of renewable energy integrated system[J]. Solar Energy, 2024(7): 127-132. | |
17 | 钱宇, 陈耀熙, 史晓斐, 等. 太阳能波动特性大数据分析与风光互补耦合制氢系统集成[J]. 化工学报, 2022,73(5): 2101-2110. |
Qian Y, Chen Y X, Shi X F, et al. Big data analysis of solar energy fluctuation characteristics and integration of wind-photovoltaic to hydrogen system[J]. CIESC Journal, 2022, 73(5): 2101-2110. | |
18 | Han Y L, Shi K N, Qian Y, et al. Design and operational optimization of a methanol-integrated wind-solar power generation system[J]. Journal of Environmental Chemical Engineering, 2023, 11(3): 109992. |
19 | Ulleberg Ø. Modeling of advanced alkaline electrolyzers: a system simulation approach[J]. International Journal of Hydrogen Energy, 2003, 28(1): 21-33. |
20 | 黄启帆, 陈洁, 曹喜民, 等. 基于碱性电解槽和质子交换膜电解槽协同制氢的风光互补制氢系统优化[J]. 电力自动化设备, 2023, 43(12): 168-174. |
Huang Q F, Chen J, Cao X M, et al. Optimization of wind-photovoltaic complementation hydrogen production system based on synergistic hydrogen production by alkaline electrolyzer and proton exchange membrane electrolyzer[J]. Electric Power Automation Equipment, 2023, 43(12): 168-174. | |
21 | Yang B, Zhang Z J, Su S, et al. Optimal scheduling of wind-photovoltaic-hydrogen system with alkaline and proton exchange membrane electrolyzer[J]. Journal of Power Sources, 2024, 614: 235010. |
22 | Al-Ghussain L, Ahmad A D, Abubaker A M, et al. Techno-economic feasibility of hybrid PV/wind/battery/thermal storage trigeneration system: toward 100% energy independency and green hydrogen production[J]. Energy Reports, 2023, 9: 752-772. |
23 | 广东省能源局. 广东省能源局关于印发广东省促进新型储能电站发展若干措施的通知[EB/OL]. [2023-06-05]. . |
Guangdong Provincial Energy Bureau. Notice of Guangdong Provincial Energy Bureau on printing and distributing several measures to promote the development of new energy storage power stations[EB/OL]. [2023-06-05]. . | |
24 | 林旗力, 戚宏勋, 黄晶晶, 等. 碱性-质子交换膜水电解复合制氢平准化成本分析[J]. 储能科学与技术, 2023, 12(11): 3572-3580. |
Lin Q L, Qi H X, Huang J J, et al. Levelized cost of combined hydrogen production by water electrolysis with alkaline-proton exchange membrane[J]. Energy Storage Science and Technology, 2023, 12(11): 3572-3580. | |
25 | 广东省能源局, 国家能源局南方监管局. 关于2024年电力市场交易有关事项的通知[EB/OL]. [2023-11-21]. . |
Guangdong Provincial Energy Administration, Southern Regulatory Bureau of the National Energy Administration. Notice on matters related to the 2024 electricity market transactions[EB/OL]. [2023-11-21]. . | |
26 | 辛禾. 考虑多能互补的清洁能源协同优化调度及效益均衡研究[D]. 北京:华北电力大学, 2019. |
Xin H. Study on collaborative optimal scheduling and benefit balance of clean energy considering multi-energy complementarity[D]. Beijing: North China Electric Power University, 2019. | |
27 | Gu Y, Wang D F, Chen Q Q, et al. Techno-economic analysis of green methanol plant with optimal design of renewable hydrogen production: a case study in China[J]. International Journal of Hydrogen Energy, 2022, 47(8): 5085-5100. |
28 | 杨成玉, 马军, 李广玉, 等. 大型碱性电解水制氢装备多对一的应用与实践[J]. 太阳能, 2022(5):103-114. |
Yang C Y, Ma J, Li G Y. Application and practice of many-to-one large-scale alkaline water electrolysis hydrogen production equipment[J]. Solar Energy, 2022(5): 103-114. | |
29 | Taibi E, Miranda R, Carmo M, et al. Green Hydrogen Cost Reduction: Scaling up Electrolysers to Meet the 1.5℃ Climate Goal[M]. International Renewable Energy Agency,2020. |
30 | Reksten A H, Thomassen M S, Møller-Holst S, et al. Projecting the future cost of PEM and alkaline water electrolysers; a CAPEX model including electrolyser plant size and technology development[J]. International Journal of Hydrogen Energy, 2022, 47(90): 38106-38113. |
31 | Yang B W, Zhang R F, Shao Z F, et al. The economic analysis for hydrogen production cost towards electrolyzer technologies: current and future competitiveness[J]. International Journal of Hydrogen Energy, 2023, 48(37): 13767-13779. |
32 | Agency I E. World Energy Outlook 2023[M]. Paris: OECD, 2023. |
[1] | Bo GAO, Jiaqi WANG, Zhiliang LIU, Xuanlie ZHAO, Kun GE. Modeling and thermodynamic and economic analysis of offshore wind power-based hydrogen production systems [J]. CIESC Journal, 2025, 76(3): 1207-1220. |
[2] | Jun WAN, Jiarui SONG, Chunhuang FAN, Lele WEI, Yina NIE, Lin LIU. Highly efficient hole transfer for promoting photocatalytic hydrogen production from alkaline methanol aqueous solution [J]. CIESC Journal, 2025, 76(3): 1064-1075. |
[3] | Xiaohang ZHONG, Wei XU, Wen ZHANG, Li XU, Yuxin WANG. A critical review on the effects of Fe impurity on H2 production via alkaline water electrolysis [J]. CIESC Journal, 2025, 76(2): 519-531. |
[4] | Ke ZHANG, Weijie REN, Mengna WANG, Kaifeng FAN, Liping CHANG, Jiabin LI, Tao MA, Jinping TIAN. Liquid-liquid mixing characteristics of Bunsen reaction products in microchannels [J]. CIESC Journal, 2025, 76(2): 623-636. |
[5] | Mengfan YIN, Qian WANG, Tao ZHENG, Kui JI, Shaogui WANG, Hui GUO, Zhiqiang LIN, Rui ZHANG, Hui SUN, Haiyan LIU, Zhichang LIU, Chunming XU, Xianghai MENG, Yueping WANG. Process design of 10000 t industrial demonstration of hydrogen production from renewable energy electrolytic water - low temperature and low pressure ammonia synthesis [J]. CIESC Journal, 2025, 76(2): 825-834. |
[6] | Junfeng WANG, Junjie ZHANG, Wei ZHANG, Jiale WANG, Shuyan SHUANG, Yadong ZHANG. Liquid-phase discharge plasma decomposition of methanol for hydrogen production: optimization of electrode configuration [J]. CIESC Journal, 2024, 75(9): 3277-3286. |
[7] | Xinyi LUO, Qiang XU, Yonglu SHE, Tengfei NIE, Liejin GUO. Study on bubble dynamic characteristics and mass transfer mechanism in photoelectrochemical water splitting for hydrogen production [J]. CIESC Journal, 2024, 75(9): 3083-3093. |
[8] | Jiaqi DING, Haitao LIU, Pu ZHAO, Xiangning ZHU, Xiaofang WANG, Rong XIE. Study on intelligent rolling prediction of the multiphase flows in coal-supercritical water fluidized bed reactor for hydrogen production [J]. CIESC Journal, 2024, 75(8): 2886-2896. |
[9] | Pei WANG, Ruiming DUAN, Guangru ZHANG, Wanqin JIN. Modeling and simulation analysis of solar driven membrane separation biomethane hydrogen production process [J]. CIESC Journal, 2024, 75(3): 967-973. |
[10] | Zhipeng LIU, Changying ZHAO, Rui WU, Zhihao ZHANG. Experimental study of gas-liquid flow visualization in gradient porous transport layers based on hydrogen production by water electrolysis [J]. CIESC Journal, 2024, 75(2): 520-530. |
[11] | Haotian MA, Tirui JING, Chengcheng LIU, Turap YUSAN, Zhe ZHANG, Yidi WANG, Qinghong WANG, Chunmao CHEN, Chunming XU. Study on reduction performance and kinetics of Sr-modified LaFeO3 for methane chemical looping reforming [J]. CIESC Journal, 2024, 75(12): 4532-4546. |
[12] | Bingyan SUN, Haiqing WANG, Yutao ZHANG, Sijie WANG. Research on time-varying competitive failure of safety interlock system actuators with non-constant failure rate [J]. CIESC Journal, 2024, 75(12): 4646-4653. |
[13] | Yuming LI, Yanwen XU, Hongyu LIU, Lina MA, Yajun WANG. Synthesis and application of nickel-based phosphide in water electrolysis for hydrogen evolution [J]. CIESC Journal, 2024, 75(12): 4385-4402. |
[14] | Qi CHANG, Wei GE. Simulation study on the integration of water-gas shift and CO2-mineralization in a packed fluidized bed [J]. CIESC Journal, 2024, 75(11): 4237-4253. |
[15] | Qianxi XIANG, Xiaokang YANG, Jiaqi SUN, Feng XIE, Zhigang SHAO. Study on distribution characteristics of proton exchange membrane electrolytic cell [J]. CIESC Journal, 2024, 75(11): 4359-4368. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||