CIESC Journal ›› 2025, Vol. 76 ›› Issue (2): 879-887.DOI: 10.11949/0438-1157.20241253
• Material science and engineering, nanotechnology • Previous Articles Next Articles
Yuxuan WU1(), Cheng CHANG1,2(
), Xueping GU1,2(
), Lianfang FENG1,2, Cailiang ZHANG1,2
Received:
2024-11-05
Revised:
2024-12-03
Online:
2025-03-10
Published:
2025-02-25
Contact:
Cheng CHANG, Xueping GU
吴雨轩1(), 常诚1,2(
), 顾雪萍1,2(
), 冯连芳1,2, 张才亮1,2
通讯作者:
常诚,顾雪萍
作者简介:
吴雨轩(2000—),女,硕士研究生,wu_yuxuan@zju.edu.cn
基金资助:
CLC Number:
Yuxuan WU, Cheng CHANG, Xueping GU, Lianfang FENG, Cailiang ZHANG. Modeling of butadiene emulsion polymerization process for stereoisomerization[J]. CIESC Journal, 2025, 76(2): 879-887.
吴雨轩, 常诚, 顾雪萍, 冯连芳, 张才亮. 面向立体异构的丁二烯乳液聚合过程模型化[J]. 化工学报, 2025, 76(2): 879-887.
Alias | Reaction temperature/℃ | Feeding ratio/% |
---|---|---|
temp-65 | 65 | 0.69 |
temp-70 | 70 | |
temp-75 | 75 | |
init-0.35 | 70 | 0.35 |
init-0.69 | 0.69 | |
init-1.38 | 1.38 |
Table 1 Design of experimental conditions
Alias | Reaction temperature/℃ | Feeding ratio/% |
---|---|---|
temp-65 | 65 | 0.69 |
temp-70 | 70 | |
temp-75 | 75 | |
init-0.35 | 70 | 0.35 |
init-0.69 | 0.69 | |
init-1.38 | 1.38 |
Item | Reaction | Reaction rate | |
---|---|---|---|
init-dec | I | ||
1,4-cis | propagation | P m,n,l·+ Mc | |
chat-mon | P m,n,l· + Mc | ||
chat-agent | P m,n,l· + CTA | ||
term-dis | P m1,n1,l1· + P m2,n2,l2· | ||
term-comb | P m1,n1,l1· + P m2,n2,l2· | ||
1,4-trans | propagation | P m,n,l·+ Mt | |
chat-mon | P m,n,l· + Mt | ||
chat-agent | P m,n,l· + CTA | ||
term-dis | P m1,n1,l1· + P m2,n2,l2· | ||
term-comb | P m1,n1,l1· + P m2,n2,l2· | ||
1,2-vinyl | propagation | P m,n,l·+ Mv | |
chat-mon | P m,n,l· + Mv | ||
chat-agent | P m,n,l· + CTA | ||
term-dis | P m1,n1,l1· + P m2,n2,l2· | ||
term-comb | P m1,n1,l1· + P m2,n2,l2· |
Table 2 The stereoisomeric framework for emulsion polymerization is considered
Item | Reaction | Reaction rate | |
---|---|---|---|
init-dec | I | ||
1,4-cis | propagation | P m,n,l·+ Mc | |
chat-mon | P m,n,l· + Mc | ||
chat-agent | P m,n,l· + CTA | ||
term-dis | P m1,n1,l1· + P m2,n2,l2· | ||
term-comb | P m1,n1,l1· + P m2,n2,l2· | ||
1,4-trans | propagation | P m,n,l·+ Mt | |
chat-mon | P m,n,l· + Mt | ||
chat-agent | P m,n,l· + CTA | ||
term-dis | P m1,n1,l1· + P m2,n2,l2· | ||
term-comb | P m1,n1,l1· + P m2,n2,l2· | ||
1,2-vinyl | propagation | P m,n,l·+ Mv | |
chat-mon | P m,n,l· + Mv | ||
chat-agent | P m,n,l· + CTA | ||
term-dis | P m1,n1,l1· + P m2,n2,l2· | ||
term-comb | P m1,n1,l1· + P m2,n2,l2· |
Item | Preexponential factor① | Activation energy/(kJ/mol) |
---|---|---|
init-dec | 2.54×1016 | 139.50 |
propagation | 1.20×108 | 38.93 |
chat-mon | 8.80×106 | 54.39 |
chat-agent | 6.62×106 | 52.20 |
term | 2.47×1010 | 9.97 |
Table 3 Initial values of dynamic parameters
Item | Preexponential factor① | Activation energy/(kJ/mol) |
---|---|---|
init-dec | 2.54×1016 | 139.50 |
propagation | 1.20×108 | 38.93 |
chat-mon | 8.80×106 | 54.39 |
chat-agent | 6.62×106 | 52.20 |
term | 2.47×1010 | 9.97 |
Item | Preexponential factor① | Activation energy/(kJ/mol) | Tref/K | |
---|---|---|---|---|
init-dec | 1.40×10-5 | 139.50 | 343.15 | |
1,4-cis | propagation | 28.37 | 39.10 | 343.15 |
chat-mon | 4.07×10-2 | 42.24 | 343.15 | |
chat-agent | 25.80 | 41.31 | 343.15 | |
term-dis | 2.02×107 | 9.90 | 343.15 | |
term-comb | 2.02×107 | 9.90 | 343.15 | |
1,4-trans | propagation | 23.90 | 38.50 | 343.15 |
chat-mon | 4.07×10-2 | 42.24 | 343.15 | |
chat-agent | 25.80 | 41.31 | 343.15 | |
term-dis | 2.02×107 | 9.90 | 343.15 | |
term-comb | 2.02×107 | 9.90 | 343.15 | |
1,2-vinyl | propagation | 11.70 | 13.20 | 343.15 |
chat-mon | 4.07×10-2 | 42.24 | 343.15 | |
chat-agent | 25.80 | 41.31 | 343.15 | |
term-dis | 2.02×107 | 9.90 | 343.15 | |
term-comb | 2.02×107 | 9.90 | 343.15 |
Table 4 Dynamic parameters of three stereoisomers
Item | Preexponential factor① | Activation energy/(kJ/mol) | Tref/K | |
---|---|---|---|---|
init-dec | 1.40×10-5 | 139.50 | 343.15 | |
1,4-cis | propagation | 28.37 | 39.10 | 343.15 |
chat-mon | 4.07×10-2 | 42.24 | 343.15 | |
chat-agent | 25.80 | 41.31 | 343.15 | |
term-dis | 2.02×107 | 9.90 | 343.15 | |
term-comb | 2.02×107 | 9.90 | 343.15 | |
1,4-trans | propagation | 23.90 | 38.50 | 343.15 |
chat-mon | 4.07×10-2 | 42.24 | 343.15 | |
chat-agent | 25.80 | 41.31 | 343.15 | |
term-dis | 2.02×107 | 9.90 | 343.15 | |
term-comb | 2.02×107 | 9.90 | 343.15 | |
1,2-vinyl | propagation | 11.70 | 13.20 | 343.15 |
chat-mon | 4.07×10-2 | 42.24 | 343.15 | |
chat-agent | 25.80 | 41.31 | 343.15 | |
term-dis | 2.02×107 | 9.90 | 343.15 | |
term-comb | 2.02×107 | 9.90 | 343.15 |
Alias | Stereoisomer ratios/% | Simulation results/% | 1H NMR results/% | Relative error/% |
---|---|---|---|---|
temp-65 | 1,4-cis | 42.9 | 42.8 | 0.23 |
1,4-trans | 36.9 | 35.0 | 5.43 | |
1,2-vinyl | 20.3 | 22.2 | 8.56 | |
temp-70 | 1,4-cis | 44.3 | 44.7 | 0.89 |
1,4-trans | 37.4 | 38.4 | 2.60 | |
1,2-vinyl | 18.3 | 16.9 | 8.28 | |
temp-75 | 1,4-cis | 45.5 | 44.0 | 3.41 |
1,4-trans | 38.2 | 39.5 | 3.29 | |
1,2-vinyl | 16.3 | 16.5 | 1.21 | |
init-0.35 | 1,4-cis | 44.5 | 37.5 | 5.20 |
1,4-trans | 37.1 | 43.5 | 8.40 | |
1,2-vinyl | 18.4 | 18.9 | 6.98 | |
init-0.69 | 1,4-cis | 44.3 | 44.7 | 0.89 |
1,4-trans | 37.4 | 38.4 | 2.60 | |
1,2-vinyl | 18.3 | 16.9 | 8.28 | |
init-1.38 | 1,4-cis | 44.3 | 42.1 | 5.23 |
1,4-trans | 37.4 | 40.2 | 6.97 | |
1,2-vinyl | 18.3 | 17.8 | 2.81 |
Table 5 Simulation results and 1H NMR results of end-point stereoisomer ratios
Alias | Stereoisomer ratios/% | Simulation results/% | 1H NMR results/% | Relative error/% |
---|---|---|---|---|
temp-65 | 1,4-cis | 42.9 | 42.8 | 0.23 |
1,4-trans | 36.9 | 35.0 | 5.43 | |
1,2-vinyl | 20.3 | 22.2 | 8.56 | |
temp-70 | 1,4-cis | 44.3 | 44.7 | 0.89 |
1,4-trans | 37.4 | 38.4 | 2.60 | |
1,2-vinyl | 18.3 | 16.9 | 8.28 | |
temp-75 | 1,4-cis | 45.5 | 44.0 | 3.41 |
1,4-trans | 38.2 | 39.5 | 3.29 | |
1,2-vinyl | 16.3 | 16.5 | 1.21 | |
init-0.35 | 1,4-cis | 44.5 | 37.5 | 5.20 |
1,4-trans | 37.1 | 43.5 | 8.40 | |
1,2-vinyl | 18.4 | 18.9 | 6.98 | |
init-0.69 | 1,4-cis | 44.3 | 44.7 | 0.89 |
1,4-trans | 37.4 | 38.4 | 2.60 | |
1,2-vinyl | 18.3 | 16.9 | 8.28 | |
init-1.38 | 1,4-cis | 44.3 | 42.1 | 5.23 |
1,4-trans | 37.4 | 40.2 | 6.97 | |
1,2-vinyl | 18.3 | 17.8 | 2.81 |
18 | Jing Y, Sheares V V. Polar, functionalized diene-based materials(1): Bulk, solution, and emulsion free radical polymerization of 2-cyanomethyl-1,3-butadiene[J]. Macromolecules, 2000, 33(17): 6255-6261. |
19 | Binder J L. Microstructures of polybutadienes and butadiene-styrene copolymers[J]. Rubber Chemistry and Technology, 1955, 28(1): 121-130. |
20 | Abdollahi M, Rahmatpour A, Khoshniyat A R. Effect of the carboxylic acid monomer type on the emulsifier-free emulsion copolymerization of styrene and butadiene[J]. Journal of Applied Polymer Science, 2007, 106(2): 828-836. |
21 | Yan K, Luo Y W. Significantly suppressed chain transfer to monomer reactions in RAFT emulsion polymerization of styrene[J]. Industrial & Engineering Chemistry Research, 2019, 58(46): 20969-20975. |
22 | Safinejad A, Pourmahdian S, Hadavand B S. Emulsifier-free emulsion polymerization of acrylonitrile-butadiene-carboxylic acid monomers: a kinetic study based on polymerization pressure profile[J]. Journal of Dispersion Science and Technology, 2020, 41(2): 157-167. |
23 | 魏佑宝. 乳液丁苯工业聚合过程模拟[D]. 杭州: 浙江大学, 2001. |
Wei Y B. Simulation of industrial polymerization process of emulsion styrene-butadiene[D]. Hangzhou: Zhejiang University, 2001. | |
24 | Saldívar-Guerra E, Infante-Martínez R, Islas-Manzur J M. Mathematical modeling of the production of elastomers by emulsion polymerization in trains of continuous reactors[J]. Processes, 2020, 8(11): 1508. |
25 | He G, Luo T, Dang Y G, et al. Combined mechanistic and genetic programming approach to modeling pilot NBR production: influence of feed compositions on rubber mooney viscosity[J]. RSC Advances, 2021, 11(2): 817-829. |
26 | Carpio R R, Feital T, Câmara M M, et al. Digital twin for the SBR cold emulsion copolymerization process[J]. Macromolecular Reaction Engineering, 2024, 18(3): 2300055. |
27 | 冯连芳, 顾雪萍, 王凯. 搅拌反应器中反应热的实时监测Ⅰ确定性动态模型的量热法[J]. 化学反应工程与工艺, 1999, 15(1): 65-70. |
Feng L F, Gu X P, Wang K. On-line calorimetry for supervising batch reactor[J]. Chemical Reaction Engineering and Technology, 1999, 15(1): 65-70. | |
28 | Roberts D E. Heats of polymerization — a summary of published values and their relation to structure[J]. Journal of Research of the National Bureau of Standards, 1950, 44(3): 221. |
29 | Makhiyanov N. Determination of configurational isomers in polybutadienes by 1H and 13C NMR spectroscopy[J]. Polymer Science Series A, 2012, 54(2): 69-80. |
30 | 谷立广, 王晓工, 刘德山, 等. 共缩聚物序列结构的1H-NMR研究[J]. 清华大学学报(自然科学版), 1992, 32(3): 75-81. |
Gu L G, Wang X G, Liu D S, et al. Study on sequence structure of copolycondensation polymer by 1H-NMR[J]. Journal of Tsinghua University (Science and Technology), 1992, 32(3): 75-81. | |
31 | Washington I D. Dynamic modelling of emulsion polymerization for the continuous production of nitrile rubber[D]. Waterloo: University of Waterloo, 2008. |
1 | Riccò T, Pavan A, Danusso F. Dynamic transition of grafted polybutadiene in ABS resins[J]. Polymer, 1975, 16(9): 685-689. |
2 | Wu S T, Chen M, Wu G F, et al. Variation of core-shell structural particles and their toughening behavior in poly(vinyl chloride) (PVC) matrix[J]. Journal of Polymer Research, 2015, 22(5): 82. |
3 | Medeiros A M S, Bourgeat-Lami E, McKenna T F L. Styrene-butadiene rubber by miniemulsion polymerization using in situ generated surfactant[J]. Polymers, 2020, 12(7): 1476. |
4 | Yin S, Lu Z H, Bai H R, et al. Functionalized GO/hydroxy-terminated polybutadiene composites with high anti-migration and ablation resistance performance[J]. Polymers, 2022, 14(16): 3315. |
5 | Kalenda P. Using the maleinized liquid polybutadiene as a binder for the anticorrosive coatings[J]. Pigment & Resin Technology, 2002, 31(1): 17-26. |
6 | Hou G Y, Tao W, Liu J, et al. Effect of the structural characteristics of solution styrene-butadiene rubber on the properties of rubber composites[J]. Journal of Applied Polymer Science, 2018, 135(24): e45749. |
7 | 吴宇. 低顺式聚丁二烯合成及其应用于连续本体法高抗冲ABS制备研究[D]. 兰州: 兰州大学, 2013. |
Wu Y. Study on the synthesis of LCBR and which used to prepare high impact ABS[D]. Lanzhou: Lanzhou University, 2013. | |
8 | Kumar A, Mohanty S, Gupta V K. Butadiene rubber: synthesis, microstructure, and role of catalysts[J]. Rubber Chemistry and Technology, 2021, 94(3): 393-409. |
9 | 罗梦, 宋玉栋, 郑盛之, 等. ABS树脂废水胶乳浓度对破乳的影响[J]. 化工学报, 2016, 67(11): 4837-4842. |
Luo M, Song Y D, Zheng S Z, et al. Effect of latex concentration in ABS resin wastewater on demulsification[J]. CIESC Journal, 2016, 67(11): 4837-4842. | |
10 | 徐林, 张春庆, 王雪. 不同微观结构聚丁二烯橡胶的自由基接枝反应[J]. 合成橡胶工业, 2021, 44(2): 87-92. |
Xu L, Zhang C Q, Wang X. Radical grafting reaction of polybutadiene rubber with different microstructure[J]. China Synthetic Rubber Industry, 2021, 44(2): 87-92. | |
11 | Lin J, Wang F, Zhang C Y, et al. Copolymerization of 1,3-butadiene with phenyl/phenethyl substituted 1,3-butadienes: a direct strategy to access pendant phenyl functionalized polydienes[J]. RSC Advances, 2021, 11(38): 23184-23191. |
12 | 赫炜, 朱寒, 刘天保, 等. 稀土顺丁橡胶BRNd 40和BRNd 60性能对比[J]. 合成橡胶工业, 2019, 42(5): 363-370. |
He W, Zhu H, Liu T B, et al. Performance comparison of rare-earth cis-1,4-polybutadiene rubber BRNd 40 and BRNd 60[J]. China Synthetic Rubber Industry, 2019, 42(5): 363-370. | |
13 | Short J N, Kraus G, Zelinski R P, et al. Polybutadienes of controlled cis, trans and vinyl structures[J]. Rubber Chemistry and Technology, 1959, 32(2): 614-627. |
14 | 陶燕春. 偶联剂Si747原位改性白炭黑增强溶聚丁苯橡胶复合材料的结构与性能研究[D]. 北京: 北京化工大学, 2016. |
Tao Y C. Study of structure and properties in solution polymerized styrene-butadiene rubbers filled with silica in-situ modified by Si747[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
15 | 袁泉, 李云龙, 王世杰, 等. 用分子动力学模拟研究丁二烯微观结构对丁腈橡胶物理力学性能的影响[J]. 合成橡胶工业, 2022, 45(2): 95-99. |
Yuan Q, Li Y L, Wang S J, et al. Studies on effect of butadiene microstructure on physical and mechanical properties of nitrile rubber by molecular dynamics simulation[J]. China Synthetic Rubber Industry, 2022, 45(2): 95-99. | |
16 | Condon F E. Influence of temperature of polymerization on the structural composition of emulsion polymers of butadiene[J]. Journal of Polymer Science, 1953, 11(2): 139-149. |
17 | Friedmann G, Brosse N. Stereospecific emulsion polymerization of 2-phenyl-1,3-butadiene[J]. European Polymer Journal, 1991, 27(8): 747-749. |
[1] | Yue GAO, Ding LI, Yumiao GAO. Study on catalytic oxidation remediation technology of organic polluted site soil [J]. CIESC Journal, 2025, 76(3): 1297-1304. |
[2] | Falu DANG, Zhiguo SUN, Zhao GAO, Gang WANG, Zhengyu CHEN, Linzhou ZHANG, Jingcun LIAN, Meijia LIU, Zhongdong ZHANG, Chaowei LIU. One-step catalytic cracking of crude oil to light olefins: experimental and reaction pathway studies [J]. CIESC Journal, 2025, 76(2): 667-685. |
[3] | Zilin PENG, Lei ZHOU, Qinghang DENG, Guanghua YE, Xinggui ZHOU. Kinetics of 3D NAND flash wet etching with phosphoric acid under the influence of H2SiO3 [J]. CIESC Journal, 2025, 76(2): 645-653. |
[4] | Yanping JIA, Yanju MA, Wenxin GUAN, Bin YANG, Jian ZHANG, Lanhe ZHANG. Process conditions optimization and degradation mechanism of dye wastewater by Fe0/H2O2 system using response surface methodology [J]. CIESC Journal, 2025, 76(1): 348-362. |
[5] | Nana SUN, Hongmei DONG, Wenhao GUO, Jian LIU, Jianbo HU, Shuang JIN. Rheological property influencing factors and a pressure drop prediction model for pipeline transportation in thick oil O/W emulsions stabilized by modified magnetic nanoparticles [J]. CIESC Journal, 2024, 75(S1): 143-157. |
[6] | Shugang HU, Guoqing TIAN, Wenjuan LIU, Guangfei XU, Huaqing LIU, Jian ZHANG, Yanlong WANG. Preparation of nanoscale zero-valent iron and its application of reduction and oxidation technology [J]. CIESC Journal, 2024, 75(9): 3041-3055. |
[7] | Junxia MA, Lintao LI, Weili XIONG. A semi-supervised soft sensor modeling method based on the Tri-training GPR [J]. CIESC Journal, 2024, 75(7): 2613-2623. |
[8] | Xiaokai CHENG, Wei LI, Jingdai WANG, Yongrong YANG. Advances in nickel catalyzed controlled/living radical polymerization reactions [J]. CIESC Journal, 2024, 75(4): 1105-1117. |
[9] | Yanping JIA, Dongxu YIN, Jingyi XU, Haifeng ZHANG, Lanhe ZHANG. Mechanism study of oxytetracycline hydrochloride degradation through activating sulfite by Fe2+/Mn2+ [J]. CIESC Journal, 2024, 75(2): 647-658. |
[10] | Guimei CHEN, Yuyun XIE, Youwei YANG, Yan GAO, Chunying WANG. Degradation of rhodamine B by peroxymonosulfate activated by Prussian blue analogue derivatives [J]. CIESC Journal, 2024, 75(10): 3804-3814. |
[11] | Wenning LI, Min LU, Yu YIN. High dispersion of cobalt on the reduced graphene oxide for advanced oxidation degradation of organic pollutants [J]. CIESC Journal, 2024, 75(10): 3793-3803. |
[12] | Wenqi ZHAO, Yanjun DENG, Chunying ZHU, Taotao FU, Youguang MA. Research progress on nanoparticle stabilizing Pickering emulsion and droplet coalescence dynamics [J]. CIESC Journal, 2024, 75(1): 33-46. |
[13] | Xueyi MA, Keqin LIU, Jijiang HU, Zhen YAO. CFD studies on the mixing and reaction in a solution polymerization reactor for POE production [J]. CIESC Journal, 2024, 75(1): 322-337. |
[14] | Zhenghao JIN, Lijie FENG, Shuhong LI. Energy and exergy analysis of a solution cross-type absorption-resorption heat pump using NH3/H2O as working fluid [J]. CIESC Journal, 2023, 74(S1): 53-63. |
[15] | Jintong LI, Shun QIU, Wenshou SUN. Oxalic acid and UV enhanced arsenic leaching from coal in flue gas desulfurization by coal slurry [J]. CIESC Journal, 2023, 74(8): 3522-3532. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 62
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 118
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||