1 |
赵韬. 染料废水处理技术及实施要点分析[J]. 中国资源综合利用, 2018, 36(4): 98-100.
|
|
Zhao T. Wastewater treatment technology and analysis of implementation points[J]. China Resources Comprehensive Utilization, 2018, 36(4): 98-100.
|
2 |
任南琪, 周显娇, 郭婉茜, 等. 染料废水处理技术研究进展[J]. 化工学报, 2013, 64(1): 84-94.
|
|
Ren N Q, Zhou X J, Guo W Q, et al. A review on treatment methods of dye wastewater[J]. CIESC Journal, 2013, 64(1): 84-94.
|
3 |
Nashy E, Alashkar T, Masaoud R, et al. Integration of Fenton oxidation with nano-graphene oxide to eliminate the hazardous effect of chromated/dyed tannery effluents[J]. Egyptian Journal of Chemistry, 2021, 64(2): 649-660.
|
4 |
Meriç S, Selçuk H, Belgiorno V. Acute toxicity removal in textile finishing wastewater by Fenton’s oxidation, ozone and coagulation-flocculation processes[J]. Water Research, 2005, 39(6): 1147-1153.
|
5 |
Yao Y, Li K, Chen S, et al. Decolorization of Rhodamine B in a thin-film photoelectrocatalytic (PEC) reactor with slant-placed TiO2 nanotubes electrode[J]. Chemical Engineering Journal, 2012, 187: 29-35.
|
6 |
García-Montaño J, Torrades F, García-Hortal J A, et al. Combining photo-Fenton process with aerobic sequencing batch reactor for commercial hetero-bireactive dye removal[J]. Applied Catalysis B: Environmental, 2006, 67(1/2): 86-92.
|
7 |
Mondal P, Mukherji S, Garg A. Performance of treatment schemes comprising chromium-hydrogen peroxide-based advanced oxidation process for textile wastewater[J]. Environmental Science and Pollution Research, 2022, 29(58): 88089-88100.
|
8 |
厉鹏远, 邱立平, 孙绍芳, 等. 强化传统芬顿/类芬顿氧化效能的研究进展[J].中国给水排水, 2021, 37(10): 34-40.
|
|
Li P Y, Qiu L P, Sun S F, et al. Research progress on enhancing the oxidation efficiency of traditional Fenton/Fenton-like process[J]. China Water & Wastewater, 2021, 37(10): 34-40.
|
9 |
张潇逸, 何青春, 蒋进元, 等. 类芬顿处理技术研究进展综述[J]. 环境科学与管理, 2015, 40(6): 58-61.
|
|
Zhang X Y, He Q C, Jiang J Y, et al. Study progress of class-Fenton treatment technology[J]. Environmental Science and Management, 2015, 40(6): 58-61.
|
10 |
王丽苹, 李平, 木合塔尔·吐尔洪, 等. Fe0/H2O2类芬顿法提高污泥脱水性能及机理分析[J]. 现代化工, 2018, 38(12): 119-123.
|
|
Wang L P, Li P, Tuerhong M, et al. Improving dewaterability of waste activated sludge by Fe0/H2O2 Fenton-like process and its mechanism[J]. Modern Chemical Industry, 2018, 38(12): 119-123.
|
11 |
Martins R C, Lopes D V, Quina M J, et al. Treatment improvement of urban landfill leachates by Fenton-like process using ZVI[J]. Chemical Engineering Journal, 2012, 192: 219-225.
|
12 |
Teixeira A P C, Tristão J C, Araujo M H, et al. Iron: a versatile element to produce materials for environmental applications[J]. Journal of the Brazilian Chemical Society, 2012, 23(9): 1579-1593.
|
13 |
邹亚辰, 贾小宁, 冉浪, 等. 零价铁类芬顿法处理含低浓度重金属离子有机废水[J]. 化学反应工程与工艺, 2021, 37(2): 167-174.
|
|
Zou Y C, Jia X N, Ran L, et al. Study on the treatment of organic wastewater containing low concentration heavy metal ions by zero-valent iron Fenton-like process[J]. Chemical Reaction Engineering and Technology, 2021, 37(2): 167-174.
|
14 |
王彦斌, 赵红颖, 赵国华, 等. 基于铁化合物的异相Fenton催化氧化技术[J]. 化学进展, 2013, 25(8): 1246-1259.
|
|
Wang Y B, Zhao H Y, Zhao G H, et al. Iron compound-based heterogeneous Fenton catalytic oxidation technology[J]. Progress in Chemistry, 2013, 25(8): 1246-1259.
|
15 |
兰明, 杨晶, 严松, 等. 零价铁Fenton技术处理含聚乙烯醇的印染退浆废水[J]. 环境污染与防治, 2016, 38(5): 82-86.
|
|
Lan M, Yang J, Yan S, et al. Treatment of polyvinyl alcohol containing desizing wastewater by zero-valent iron Fenton technology[J]. Environmental Pollution & Control, 2016, 38(5): 82-86.
|
16 |
张乐观, 方冰, 朱泮民. Fe0价铁催化Fenton法降解酸性橙Ⅱ的研究[J]. 水处理技术, 2010, 36(12): 35-38.
|
|
Zhang L G, Fang B, Zhu P M. Study on the degradation of dye acid orange Ⅱ in Fenton process catalyzed by Fe0 [J]. Technology of Water Treatment, 2010, 36(12): 35-38.
|
17 |
Fu F L, Wang Q, Tang B. Effective degradation of C.I. Acid Red 73 by advanced Fenton process[J]. Journal of Hazardous Materials, 2010, 174(1/2/3): 17-22.
|
18 |
Chang M C, Shu H Y, Yu H H. An integrated technique using zero-valent iron and UV/H2O2 sequential process for complete decolorization and mineralization of C.I. Acid Black 24 wastewater[J]. Journal of Hazardous Materials, 2006, 138(3): 574-581.
|
19 |
Zhang S, Wang D, Zhou L, et al. Intensified internal electrolysis for degradation of methylene blue as model compound induced by a novel hybrid material: multi-walled carbon nanotubes immobilized on zero-valent iron plates (Fe0-CNTs)[J]. Chemical Engineering Journal, 2013, 217: 99-107.
|
20 |
Feng J Y, Hu X J, Yue P L. Effect of initial solution pH on the degradation of Orange Ⅱ using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst[J]. Water Research, 2006, 40(4): 641-646.
|
21 |
Wang Y, Gao Y W, Chen L, et al. Goethite as an efficient heterogeneous Fenton catalyst for the degradation of methyl orange[J]. Catalysis Today, 2015, 252: 107-112.
|
22 |
廖琳, 黄宏星, 叶俊炜, 等. Fe(0)/H2O2协同降解亚甲基蓝的研究[J]. 生态环境学报, 2011, 20(10): 1547-1550.
|
|
Liao L, Huang H X, Ye J W, et al. Degradation of methylene blue by Fe(0)/H2O2 [J]. Ecology and Environmental Sciences, 2011, 20(10): 1547-1550.
|
23 |
林光辉, 吴锦华, 李平, 等. 零价铁与双氧水异相Fenton降解活性艳橙X-GN[J]. 环境工程学报, 2013, 7(3): 913-917.
|
|
Lin G H, Wu J H, Li P, et al. Effective degradation of reactive brilliant orange X-GN by heterogeneous Fenton reaction using zero-valent iron and H2O2 [J]. Chinese Journal of Environmental Engineering, 2013, 7(3): 913-917.
|
24 |
Lei P X, Chen C C, Yang J, et al. Degradation of dye pollutants by immobilized polyoxometalate with H2O2 under visible-light irradiation[J]. Environmental Science & Technology, 2005, 39(21): 8466-8474.
|
25 |
Hu S H, Yao H R, Wang K F, et al. Intensify removal of nitrobenzene from aqueous solution using nano-zero valent iron/granular activated carbon composite as Fenton-like catalyst[J]. Water, Air, & Soil Pollution, 2015, 226(5): 155.
|
26 |
Xiong Y, Karlsson H T. An experimental investigation of chemical oxygen demand removal from the wastewater containing oxalic acid using three-phase three-dimensional electrode reactor[J]. Advances in Environmental Research, 2002, 7(1): 139-145.
|
27 |
贾艳萍, 丁雪, 刚健, 等. Mn强化Fe/C微电解工艺条件优化及降解油墨废水机理[J]. 化工学报, 2022, 73(5): 2183-2193.
|
|
Jia Y P, Ding X, Gang J, et al. Optimization of process conditions for Mn enhanced Fe/C microelectrolysis and degradation mechanism of ink wastewater[J]. CIESC Journal, 2022, 73(5): 2183-2193.
|
28 |
Körbahti B K, Rauf M A. Response surface methodology (RSM) analysis of photoinduced decoloration of toludine blue[J].Chemical Engineering Journal, 2008, 136(1): 25-30.
|
29 |
贾艳萍, 单晓倩, 宋祥飞, 等. 响应面法优化餐饮废水混凝工艺研究[J]. 化工学报, 2021, 72(9): 4931-4940.
|
|
Jia Y P, Shan X Q, Song X F, et al. Optimization of coagulation process of catering wastewater by response surface methodology[J]. CIESC Journal, 2021, 72(9): 4931-4940.
|
30 |
胡甜甜, 赵地顺, 武宇, 等. 醚基功能化离子液体催化合成乙酸正丁酯[J]. 化工学报, 2017, 68(1): 136-145.
|
|
Hu T T, Zhao D S, Wu Y, et al. Synthesis of n-butyl acetate by ether-functionalized ionic liquid[J]. CIESC Journal, 2017, 68(1): 136-145.
|
31 |
Zhang W X. Nanoscale iron particles for environmental remediation: an overview[J]. Journal of Nanoparticle Research, 2003, 5(3): 323-332.
|
32 |
Sun Y P, Li X Q, Cao J S, et al. Characterization of zero-valent iron nanoparticles[J]. Advances in Colloid and Interface Science, 2006, 120(1/2/3): 47-56.
|
33 |
Bergendahl J A, Thies T P. Fenton’s oxidation of MTBE with zero-valent iron[J]. Water Research, 2004, 38(2): 327-334.
|
34 |
Gallard H, De Laat J. Kinetic modelling of Fe(Ⅲ)/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound[J]. Water Research, 2000, 34(12): 3107-3116.
|
35 |
Tunç S, Duman O, Gürkan T. Monitoring the decolorization of Acid Orange 8 and Acid Red 44 from aqueous solution using Fenton’s reagents by online spectrophotometric method: effect of operation parameters and kinetic study[J]. Industrial & Engineering Chemistry Research, 2013, 52(4): 1414-1425.
|
36 |
Behnajady M A, Modirshahla N, Ghanbary F. A kinetic model for the decolorization of C.I. Acid Yellow 23 by Fenton process[J]. Journal of Hazardous Materials, 2007, 148(1/2): 98-102.
|
37 |
张全碧, 羊依金, 郭旭晶. 芬顿氧化法对利福平制药废水中溶解性有机物的催化降解[J]. 化工学报, 2023, 74(5): 2217-2227.
|
|
Zhang Q B, Yang Y J, Guo X J. Catalytic degradation of dissolved organic matter in rifampicin pharmaceutical wastewater by Fenton oxidation process[J]. CIESC Journal, 2023, 74(5): 2217-2227.
|
38 |
Lin Y M, Li D Z, Hu J H, et al. Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite[J]. The Journal of Physical Chemistry C, 2012, 116(9): 5764-5772.
|
39 |
Xiao M S, Zhang Y G. Electro-catalytic oxidation of phenacetin with a three-dimensional reactor: degradation pathway and removal mechanism[J]. Chemosphere, 2016, 152: 17-22.
|
40 |
贾艳萍, 张真, 佟泽为, 等. 铁碳微电解处理印染废水的效能及机理研究[J]. 化工学报, 2020, 71(4): 1791-1801.
|
|
Jia Y P, Zhang Z, Tong Z W, et al. Study on efficiency and mechanism of iron-carbon microelectrolysis treatment of dyeing wastewater[J]. CIESC Journal, 2020, 71(4): 1791-1801.
|
41 |
沈拥军, 王云丽, 姜明吉, 等. 响应面法优化NaClO2/UV降解藏红T及动力学研究[J]. 南通大学学报 (自然科学版), 2018, 17(1): 15-22, 2.
|
|
Shen Y J, Wang Y L, Jiang M J, et al. Kinetics study and optimization of NaClO2/UV treated Safranine T based response surface methodology[J]. Journal of Nantong University (Natural Science Edition), 2018, 17(1): 15-22, 2.
|
42 |
刘柏辰. 电化学高级氧化技术降解水溶液中藏红T的研究[D]. 天津: 河北工业大学, 2020.
|
|
Liu B C. Study on the degradation of Safranine T in aqueous solution by electrochemical advanced oxidation technology[D]. Tianjin: Hebei University of Technology, 2020.
|
43 |
汤世麟. Fe2O3/硅藻土复合材料的制备及其催化降解结晶紫的研究[D]. 长沙: 长沙理工大学, 2019.
|
|
Tang S L. Preparation of Fe2O3/diatomite composite material and its study on catalytic degradation of crystal violet in water[D]. Changsha: Changsha University of Science & Technology, 2019.
|
44 |
王犇, 孙燕, 李爱英, 等. 三维电解法联合臭氧电催化氧化处理结晶紫模拟染料废水[J]. 化学与生物工程, 2022, 39(5): 36-42.
|
|
Wang B, Sun Y, Li A Y, et al. Treatment of crystal violet simulated dye wastewater by three-dimensional electrolysis combined with ozone electrocatalytic oxidation[J]. Chemistry & Bioengineering, 2022, 39(5): 36-42.
|
45 |
Liu B C, Ren B L, Xia Y, et al. Electrochemical degradation of Safranine T in aqueous solution by Ti/PbO2 electrodes[J]. Canadian Journal of Chemistry, 2020, 98(1): 7-14.
|